GEOTECHNICAL REPORT

FOR

CONSTRUCTION OF AN ELECTRICITY STORAGE FACILITY AND CONNECTION TO CEF GLODENI 1, IN GLODENI, MURES COUNTY

GLODENI MUNICIPALITY, CF 50604, 52635, 52833, MUREȘ COUNTY, ROMÂNIA

CLIENT: S.C. GLODENI ENERGY S.R.L.

TECHNICAL SPECIALIST: S.C. GEO SEARCH S.R.L.

PROJECT NO: 3140LGS/2025

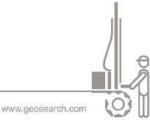
DESIGN PHASE: P.TH.+D.E.

DATA: MARCH 2025

LIST OF SIGNATURES

TECHNICAL DOCUMENTATION

CONSTRUCTION OF AN ELECTRICITY STORAGE FACILITY AND CONNECTION TO CEF GLODENI 1, IN GLODENI, MURES COUNTY


GLODENI MUNICIPALITY, CF 50604, 52635, 52833, MUREȘ COUNTY, ROMÂNIA

Elaborated by:		
	Geologist Andrea FANGLI	

Content

1. Executive summary	7
1.1. Purpose of the work	7
1.2. Client	
1.3. Technical specialist	
1.4. Synthesis of information	
2. Preliminary investigations of studied site	11
2.1. Geomorphology and geology of studied area	11
2.2. Maximum frost depth	
2.3. Seismic zone	
2.4. Climate characteristics	
2.5. Natural hazards	
3. Execution and information from boreholes	16
3.1. Geotechnical field investigations faze	
3.1.1. Ground investigations	
3.1.2. In-situ investigations	
3.2.1. Soil sampling for geotechnical investigations	
3.2.2. Soil sampling for chemical aggressiveness determinations	20
3.3. Groundwater	20
4. Geological and geotechnical characterization of studied area	22
4.1. Topsoil layer	22
4.2. Alluvial deposits	
4.2.1. Clayey alluvial layer	
4.2.2. Weak clayey alluvial layer	
5. Assessment of geotechnical information	
5.1. Recommended values of allowable bearing pressure according to NP112-2014	
5.2. Recommended values	
5.4. Framing land categories stipulated by the regulations relating to earth works	
5.5. Foundation conditions for future construction	
5.5.1. Constructive measures in case of foundations at the minimum foundation depth (NP126-2010	
5.5.2. General recommendations for execution of foundations for future buildings	
5.5.3. Design of surface foundations	
6. Bibliography	36
List of figures	
Fig. 1. Framing of the studied area on the topographical map, scale de 1: 25000	11
Fig. 2. Framing of the studied area on the geological map, page 11 – Bistrița, L-35-VII,	scale
1:200000 (1967)	12
Fig. 3. Maximum frost depth in the studied area	13
Fig. 4. Ground acceleration in the studied area	13
Fig. 5. Corner period in the studied area	
Fig. 6. Seismic intensity in the studied area	15

Fig. 7. Execution of borehole FS01	17
Fig. 8. Execution of borehole FS02	17
Fig. 9. Execution of borehole FS03	17
Fig. 10. Execution of borehole FS04+DPH	17
Fig. 11. Execution of borehole FS05+DPH	17
Fig. 12. Execution of borehole FS06+DPH	17
Fig. 13. Execution of borehole FS07+DPH	18
Fig. 14. FS04+DPH, 1,30 ÷ 1,50 m – clayey alluvial layer	23
Fig. 15. FS05+DPH, 1,50 ÷ 1,70 m − clayey alluvial layer	23
Fig. 16. FS06+DPH, 1,70 ÷ 2,00 m – clayey alluvial layer	23
Fig. 17. FS07+DPH, 1,50 ÷ 1,70 m – clayey alluvial layer	23
Fig. 18. Swelling potential Daksanamurthy, Raman [2] – clayey alluvial layer	24
Fig. 19. Swelling potential Van Der Merwe [10] – clayey alluvial layer	24
Fig. 20. FS01, $2,00 \div 2,40 \text{ m}$ – weak clayey alluvial layer	25
Fig. 21. FS03, 3,00 ÷ 3,40 m – weak clayey alluvial layer	25
Fig. 22. Swelling potential Daksanamurthy, Raman [2] - weak clayey alluvial layer	26
Fig. 23. Swelling potential Van Der Merwe [10] – weak clayey alluvial layer	26
List of tables	
Table 1. Recommended values	10
Table 2. Climate characteristics	14
Table 3. Natural Darks	14
Table 4. Geotechnical investigations	17
Table 5. Table used for correlations	18
Table 6. Soil samples chemical aggressiveness	20
Table 7. Chemical aggressiveness of soils in geotechnical boreholes	20
Table 8. Groundwater depth measurements inside of boreholes	21
Table 9. Statistical processing of physical parameters for clayey alluvial layer	23
Table 10. Statistical processing of mechanical parameters for clayey alluvial layer	24
Table 11. Statistical processing of physical parameters for weak clayey alluvial layer	25
Table 12. Statistical processing of mechanical parameters for weak clayey alluvial layer	26
Table 13. Characteristic values for alluvial gravely layer	27
Table 14. Allowable bearing pressure	28
Table 15. Recommended values	29
Table 16. The final classification in geotechnical category (NP 074-2022)	30
Table 17. Land framing in estimate norms according to Romanian legislation - TS - MLP	ΉT
1994	30
Table 18. Depths / foundation layer	31
Table 19. Frost susceptibility evaluation and quality assessment of soils identified as	
terracing material	31
Table 20. Bank slope depending on depth.	34

APPEDIX

APPENDIX 1: TERM OF REFERENCE

APPENDIX 2: GENERAL PLAN

APPENDIX 3: SITE PLAN

APPENDIX 4: BOREHOLE LOGS AND COLUMNS

APPENDIX 5: DYNAMIC PROBING TEST REPORTS

APPENDIX 6: LABORATORY TEST REPORTS

List of norms

STAS 6054-77

TS - MLPAT 1994

ID Title Normative regarding the calculation of thermal energy C 107-3-05 performances of building construction elements – Annex D Design Code - Evaluation of snow action on constructions CR 1-1-3-2013 CR 1-1-4-2012 Design Code - Evaluation of wind action on constructions Law no. 575/2001 National spatial plan - Section V Natural risk areas Code of practice for the execution of concrete, reinforced concrete, and prestressed concrete works. Part 1: Production NE 012 - 1: 2022 of concrete Normative regarding geotechnical documentation for NP 074 - 2022 construction NP 112 - 2014 Normative for the design of direct foundation structures Normative regarding the determination of characteristic and NP 122 - 2010 calculation values of geotechnical parameters Normative regarding for foundation of buildings swelling NP 126 - 2010 and contracting soils Seismic design code - Part 1 - Design provisions for P 100-1/2013 buildings The action of the thaw - frost phenomenon at road works: 1. SR 1709-1-90 Freezing depth in the road complex SR EN 1997-1:2004 SR EN 1997-1:2004 AC:2009 Eurocode 7: Geotechnical design. Part 1: General rules SR EN 1997-1:2004/A1:2014 Eurocode 7: Geotechnical design. Part 1: General rules. SR EN 1997-1:2004/NB:2016 National Annex SR EN 1997-2:2007 Eurocode 7: Geotechnical design. Part 2: Investigation and SR EN 1997-2:2007/AC:2010 Eurocode 7: Geotechnical design. Part 2: Investigation and SR EN 1997-2:2007/NB:2009 testing. National Annex Geotechnical investigations and tests. Identification and SR EN ISO 14688-1:2018 classification of soil. Part 1: Identification and description Geotechnical investigations and tests. Identification and SR EN ISO 14688-2:2018 classification of soil. Part 2: Principles for classification Geotechnical investigations and tests. Sampling methods SR EN ISO 22475-1:2021 and groundwater measurements. Part 1: Technical principles for execution Geotechnical investigation and testing — Field testing — SR EN ISO 22476-2:2006 Part 2: Dynamic probing Roadworks. Earthworks. General requirements for quality STAS 2914-1984

Foundation soil. Maximum frost depths. Division in zones

Indicator of specification and catalogue standard for

of the territory of Romania

excavation works

1. Executive summary

1.1. Purpose of the work

This paper will provide data on the project "Construction of an electricity storage facility and connection to CEF Glodeni 1, in Glodeni, Mures County", located in Glodeni municipality, CF 50604, 52635, 52833, Mureş county, România.

This site investigation program consists of:

- identification and determination of the distribution and thickness of the layers around influence and development of the projected constructions.
- soil sampling to determinate the physical and mechanical parameters for each intercepted layer in accordance with the geotechnical category.
- in situ testing of soils by dynamic probing heavy (DPH).
- statistical processing of the values obtained from laboratory tests and the values derived from in-situ tests.
- identification of the underground water level.

The present geotechnical study is prepared in accordance with the provisions of **SR EN 1997-1** (*Geotechnical Design 1. General rules*), **SR EN 1997-2** (*Geotechnical design - 2. Investigation and testing*) and **NP74-2022** (*Normative on geotechnical documentation for construction*).

Between 21-22.10.2022 S.C. SAIDEL Engineering S.A. carried out 7 geotechnical boreholes up to a depth of 8.00 m from execution surface, on the neighboring site (cadastral no. 50606). The results of these boreholes were provided by the customer for a more accurate evaluation of the site investigated in the current project. The borehole logs are attached to this study in *Appendix 4*.

1.2. Client

DTEK RENEWABLES INTERNATIONAL B.V.

1.3. Technical specialist

S.C. GEO SEARCH S.R.L.

1.4. Synthesis of information

Geotechnical investigations

The field investigation program was executed in 2 phases:

- ➤ Phase I conducted in 25 January 2024 and consists of:
- 3 geotechnical boreholes (FS01 ÷ FS03), each with a depth of 8.00 meters from the execution level, totaling 24.00 linear meters. These boreholes were executed by continuous rotating coring, with single and double wall core, with diameters

between 116 ÷ 101 mm, in dry and wet system, with a ROLATEC RL48L equipment.

- 8 standard penetration tests (SPT), conducted inside of boreholes.
- > Phase II realized in 21 March 2025 and consists of:
- 4 geotechnical boreholes (FS04 ÷ FS07), executed by a GeoTool LSKM heavy dynamic penetrometer, to depths between 2.30 ÷ 3.20 m from execution surface, summing 10.90 linear meter.
- 4 dynamic probing heavy test (DPH) executed in the continuation of the geotechnical boreholes, up to depths between 3,50 ÷ 3,90 m from the execution level.

Lithology

The following geotechnical units were identified: topsoil layer, clayey alluvial layer, weak clayey alluvial layer, granular alluvial layer.

Underground water

The groundwater level on the current investigation phase was NOT intercepted.

In previous phases the boreholes executed by S.C. Geo Search S.R.L. intercepted the groundwater level from 2.40 m depth, respectively the boreholes executed by SAIDEL Engineering S.A. intercepted in the depth range $5.70 \div 6.00$ m.

Geotechnical category according to NP074-2022 Foundation depths and foundation systems Excavations and

supports

The studied area fits in geotechnical category 1.

Details of recommended foundation depths can be found in **Chapter 5.5.**

Under current legislation we recommend the following:

Excavations above groundwater level with unsupported vertical walls can be carried out with depths up to:

- •0,75 m in the case of non-cohesive and weakly cohesive soils.
- •1,25 m for medium cohesion soil.
- •2,00 m for very cohesive soil.

In the case of excavations with unsupported vertical walls, the following measures shall be taken to maintain the stability of the banks:

- The land around the excavation is not allowed to be loaded and does not suffer vibration.
- The soil resulting from digging should not be deposited at less than 1,00 m from the edge of the foundation pit; for excavations up to 1.00 m deep, the distance can be taken equal to the depth of the excavation.
- Measures shall be taken to remove rapidly the rainwater or accidental waters.

• If, for unforeseen reasons, the foundations are not poured immediately after excavation has been completed and phenomena indicating a danger of subsidence are observed, measures will be taken to support the wall in the area in question or to convert them into walls with a slope.

The constructor is obliged to monitor the appearance and development of longitudinal cracks parallel to the edge of the excavation which may indicate the beginning of bank subsidence and to take measures to prevent accidents.

If the depth of the excavation exceeds the recommended values for unsupported vertical walls, the excavations may be made in the slope under the following conditions:

- The soil has a natural humidity of 12-18% and conditions are provided so that it does not grow.
- foundation excavation does not stay open for long.

In all other cases (when it is not possible to excavate with unsupported vertical walls or on a slope), excavation can only be carried out under the protection of the supports, respecting the recommendations of the legislation in force. A solution of tangent/spaced piles or a molded wall support may be chosen.

The land around the excavation is not allowed to be loaded and does not suffer vibration.

The soil resulting from the excavation will be deposited at a distance at least equal to the depth of the excavation.

Table 1. Recommended values

	Water content	Plasticity index	Consistency index	Bulk unit weight	Saturated unit weight	Void ratio	Degree of saturation	Free swelling	Oedometric deformation modulus	Swelling pressure	Effective angle of friction	Effective cohesion	Post-peak eff. angle of friction	Post-peak eff. cohesion	Undrained shear strength	Relative density	Internal friction angle	Linear deformation
	w	$\mathbf{I}_{\mathbf{p}}$	I_c	γ	γsat	e	S_r	U_L	E ₂₀₀₋₃₀₀	Pu	φ'	c`	ϕ'_{pp}	c'pp	Cu	D_{R^*}	φ'*	$\mathbf{E}_{\mathbf{s}^*}$
	[%]	-	-	[kN/m ³]	[kN/m ³]	-	[%]	[%]	[kPa]	[kPa]	[°]	[kPa]	[°]	[kPa]	[kPa]	[%]	[°]	[kPa]
Alluvial layer	19	21	0,78	19,2	19,9	0,6	90	100	14700	9,4	27,5	27,4	26,8	18,3	-	-	-	-
Weak alluvial layer	20	16	0.6	18.9	19.8	0.7	77	70	6200	5	26.5	14	24.7	6	90	-	-	-
Granular alluvial layer	11	-	-	21.9*	-	-	-	-	-	-	-	-	-	-	-	73	38	53700

^{*}Values derived from SPT and DPH tests

2. Preliminary investigations of studied site

2.1. Geomorphology and geology of studied area

Geomorphologically the investigated area is in the eastern extremity of the Mădărașului Hills [7], at the contact with the Mures Corridor, part of the Sarmas Plain (Transylvanian Plain).

In the relief of the Transylvanian Plain, soft Miocene rocks (clays, marls, sands) are imposed with a structure dominated by gentle hills with altitudes below 600 m and with the usual dome appearance, river meadows with short but very wide valleys in the form of wide aisles, all determined by monoclin asymmetries, thus acquiring a hilly appearance [7][8].

The investigated site is located on the right side of the Şar river, on a relatively flat terrain, being located on the altitude gap $350 \div 375$ m (rMN). The Şar river is a right tributary of Mureş River, which is the principal river in the area. The meteoric water drains to the Şar river or infiltrates in the ground, following the same main flow direction [7]. Several nameless streams and valleys with temporary watercourses were identified around the investigated site.

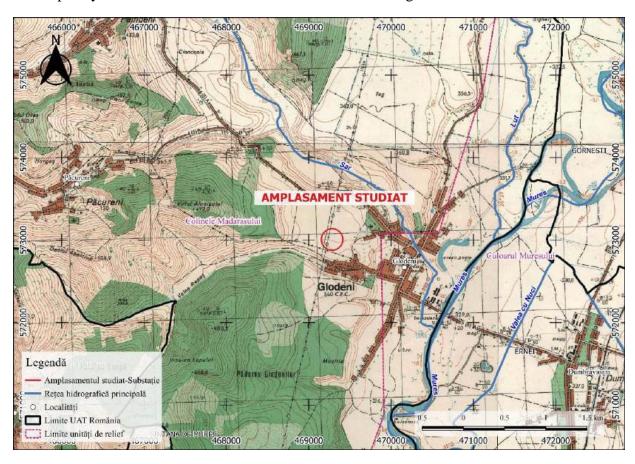


Fig. 1. Framing of the studied area on the topographical map, scale de 1: 25000.

The investigated site is in the central part of the *Transylvanian Basin*. This basin **geologically** is a sedimentary basin, formed in the Upper Cretaceous, and has gone through four tectono-structural mega sequences: Upper Cretaceous (rift type), Paleogene (sag basin), Lower Miocene (flexural basin) and Middle Miocene – upper (back arc basin) [4]. The sedimentation period ended after the Pannonian (9 Ma) [3]. In the Late Badenian - Pliocene period the basin underwent a southeastward tilting and in the Pliocene regional uplift, thus a period of erosion began.[8][4].

The bedrock in the studied area is represented by Sarmatian marine deposits which are composed by the alternation of marly clays with sands and tuffs. The Sarmatian deposits are delimited in this area are by the horizon of the Ghiriş tuff in the lower part and the level of the Bazna tuff in the upper part [8].

Over the Sarmatian deposits can be found the Pannonian ones, also with marine origin, with a thickness varying between 0.50 and 10 m, consisting of sandy marls with thin intercalations of marly limestones and sandstones [8].

Fig. 2. Framing of the studied area on the geological map, page 11 – Bistrița, L-35-VII, scale 1:200000 (1967)

To identify the boundary between Sarmatian and Pannonian deposits is very difficult. In the analyzed perimeter both marine deposits consist of the same alternations of clay and sands, but in Pannonian deposits in some level's sands may predominate, joined in places by layers of yellowish tuffs and several levels of gravel [8].

The bedrock in the investigated area is covered by recent alluvial deposits (Holocene) of the Mureş River and its tributaries, represented by successions of gravel with sand, respectively sand with gravel and clay material from the floodplain of the river covering the coarse deposits[8].

The investigated land has no industrial or urban history, thus a topsoil layer develops at the top of alluvial deposits.

2.2. Maximum frost depth

According to STAS 6054-77, the studied area has a frost depth of $80 \div 90$ cm.

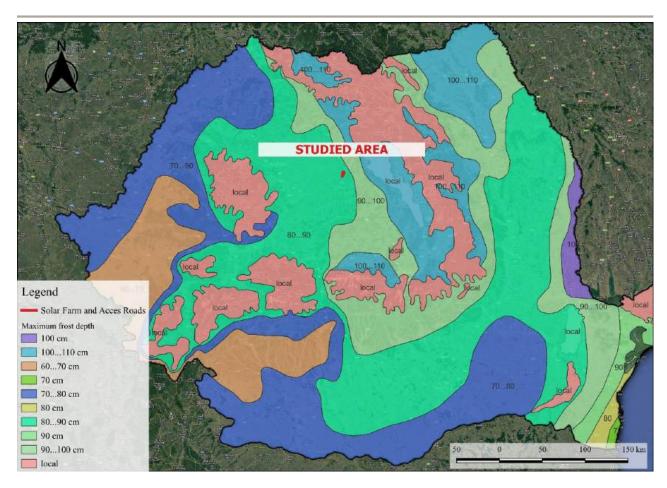


Fig. 3. Maximum frost depth in the studied area

2.3. Seismic zone

According to technical regulation P 100-1/2013, the studied area has the ground acceleration $\mathbf{a_g} = \mathbf{0.10}$ g having the average recurrence interval IMR = 225 years and the corner period, $\mathbf{Tc} = \mathbf{0.7}$.

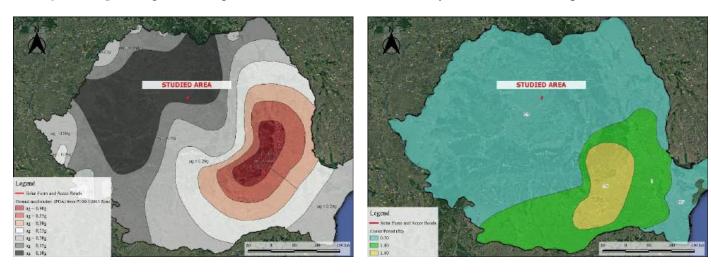


Fig. 4. Ground acceleration in the studied area

Fig. 5. Corner period in the studied area

The horizontal and vertical seismic coefficients of ground movement k_{sh} and k_{sv} are calculated as:

$$k_s = 0.5 * \gamma_l * \frac{ag}{g}$$

$$k_{sv} = 0.5 * k_s$$

$$k_{sh} = k_s$$

2.4. Climate characteristics

Climate characteristics of Voivodeni and Glodeni commune, Mureș County are represented on the bellowed table (Table 2):

Characteristics Standard Value C 107-3-05, Appendix D - Norm regarding the calculation of the Temperatures during winter -21 (C⁰) thermo-energetic performances of the construction elements of period (T_e) Area II buildings **SR 1709-1-90** The action of the freeze-unfreeze phenomenon in 0...20 Humidity index (I_m) road works: 1. The depth of frost in the road complex Climatic type I Characteristic value of loads from CR 1-1-3-2013 Design code - Evaluation of loads of snow on $1,5 \text{ (kN/m}^{2)}$ snow on the ground (s_k) constructions Dynamic wind pressure reference CR 1-1-4-2012 Design code - Assessment of wind action on 0,4 (kPa)value (q_b) buildings

Table 2. Climate characteristics

2.5. Natural hazards

The classification is made based on law 575/14.11.2001, law on the approval of the *National Territorial Development Plan - Section V - Natural Risk Areas*, updated on 07.06.2011. The law classifies natural hazards into three categories caused by earthquakes, floods, and landslides.

Natural risk areas are geographically defined areas with a potential for destructive natural phenomena, which can affect the population, human activities, the natural and built environment and cause damage and human victims.

According to Law 575/14.11.2001, updated on 06.07.2011, the commune of Voivodeni and Glodeni, could be affected with the following risks (Table 3):

Landslide type Flood types The potential commune Floods on On Floods on for landslides On torrents watercourses torrents watercourses com. Voivodeni yes is not mentioned in Law 575/14.11.2001 com. Glodeni

Table 3. Natural Darks

According to PUG Voivodeni, the investigated site is located outside the areas associated with flooding risk by reversing of high intensity, with low frequency.

According to the General Urban Plan (GUP) the territory of Glodeni commune is not characterized by risks associated with landslides or floods.

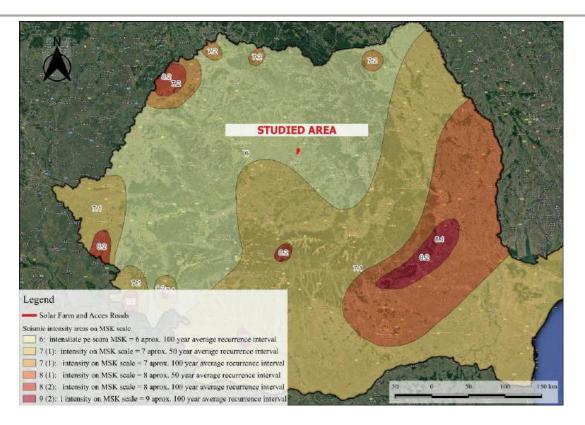


Fig. 6. Seismic intensity in the studied area

3. Execution and information from boreholes

3.1. Geotechnical field investigations faze

Between 21-22.10.2022 S.C. SAIDEL Engineering S.A. carried out 7 geotechnical boreholes up to a depth of 8.00 m from execution surface, on the neighboring site (cadastral no. 50606). The results of these boreholes were provided by the customer for a more accurate evaluation of the site investigated in the current project. The borehole logs are attached to this study in *Appendix 4*.

3.1.1. Ground investigations

The field investigation program was executed in 2 phases:

- ➤ *Phase I* conducted in 25 January 2024 and consists of:
- 3 geotechnical boreholes (FS01 ÷ FS03), each with a depth of 8.00 meters from the execution level, totaling 24.00 linear meters. These boreholes were executed by continuous rotating coring, with single and double wall core, with diameters between 116 ÷ 101 mm, in dry and wet system, with a ROLATEC RL48L equipment.
- 8 standard penetration tests (SPT), conducted inside of boreholes.
- > Phase II realized in 21 March 2025 and consists of:
- 4 geotechnical boreholes (FS04 ÷ FG07), executed by a GeoTool LSKM heavy dynamic penetrometer, to depths between 2.30 ÷ 3.20 m from execution surface, summing 10.90 linear meter
- 4 dynamic probing heavy test (DPH) executed in the continuation of the geotechnical boreholes, up to depths between $3.50 \div 3.90$ m from the execution level.

The borehole execution, and the soil and groundwater sampling were carried out in accordance with **SR EN ISO 22475-1:2021** (Geotechnical investigations and tests. Sampling methods and measurements relating to groundwater. Part 1: Technical principles for soil, rock and groundwater sampling).

This site investigation program consists of:

- identification and determination of the distribution and thickness of the layers around influence and development of the projected constructions.
- soil sampling to determinate the physical and mechanical parameters for each intercepted layer in accordance with the geotechnical category.
- in situ testing of soils by dynamic probing heavy (DPH).
- statistical processing of the values obtained from laboratory tests and the values derived from in-situ tests.
- identification of the underground water level.

The position of the geotechnical boreholes is figured in the site plan (*Appendix 3*) and in Table 4.

Table 4. Geotechnical investigations

Borehole	Execution date	Topographic	coordonates	Elevation (Z)	Investigations
ID	Execution date	(X)	(Y)	[m]	depth [m]
FS01	25 January 2024	469296.31	573030.76	362.01	8.00
FS02	25 January 2024	469284.24	572964.02	361.46	8.00
FS03	25 January 2024	469269.91	572999.35	362.04	8.00
FS04+DPH	21 March 2025	469294.65	572921.94	-	3.80
FS05+DPH	21 March 2025	469269.75	572930.51	-	3.50
FS06+DPH	21 March 2025	469262.80	572950.22	-	3.90
FS07+DPH	21 March 2025	469233.47	572960.82	-	3.90

The location of the geotechnical investigation points is presented in Fig. $7 \div \text{Fig. } 13$.

Fig. 7. Execution of borehole FS01

Fig. 8. Execution of borehole FS02

Fig. 9. Execution of borehole FS03

Fig. 10. Execution of borehole FS04+DPH

Fig. 11. Execution of borehole FS05+DPH

Fig. 12. Execution of borehole FS06+DPH

Fig. 13. Execution of borehole FS07+DPH

3.1.2. In-situ investigations

Execution of standard penetration tests (SPT)

During the geotechnical drills, 8 standard penetration tests (SPT) were carried out.

The standard penetration test is a common in situ dynamic testing method used to determine the dynamic penetration resistance of a cone or sampler with well-defined characteristics. The test is carried out within a borehole.

A hammer of 63.5 kg (140 lbs.) is dropped repeatedly from a height of 76 cm (30 inches) with a frequency not exceeding 40 beats/minute, driving the cone or sampler into the ground until reaching a depth of 15 cm (6 inches). The number of the required blows is recorded as N_0 . This procedure is repeated two more times until a total penetration of 45 cm (18 inches) is achieved, this will be noted as N_1 and N_2 .

The total number of blows (N_{60} = N_1 + N_2) represent the uncorrected dynamic penetration resistance. The test may be stopped if the total number of strokes (N60) reaches 50. In soft rocks it can be raised to 100 strokes.

To the value (N60) obtained in the field was applied a series of correction factors, according to the SR EN ISO 22476-3. The chosen factors for this project consider the length of rod, type of sampler (without thin sampler), borehole diameter, equipment efficiency and geological pressure correction where applicable. The value of the $C_{\rm N}$ factor (effect of geological pressure) has been limited to 1.2 for this project.

The standard penetration tests were carried out in accordance with **SR EN 1997-2:2007** (Geotechnical design - 2. Field investigation and testing) and **SR EN ISO 22476-3** (Geotechnical research and testing. Field tests. Part 3: Standard penetration test).

Regarding the relative density and peak friction angle, interpolation between values provided in the following table were used:

Table 5. Table used for correlations

N60	D _r [%]	φ`[°]
0	0	26
3	15	28
8	35	30
25	65	36

42	85	41
58	85	41

Deformation modulus was derived using the following equation:

sandy GRAVEL: $E_s = 900 \cdot [N60(cor) + 6]$ Equation 1 gravelly SAND: $E_s = (600 \cdot [N60(cor) + 6]) + 2000$ Equation 2 clayey SAND: $E_s = 320 \cdot [N60(cor) + 15]$ Equation 3

Undrained shear strength was deriving using following equation:

Clayey soils: $c_u = 6.25 \cdot N60(cor)$ Equation 4

Execution of dynamic heavy penetration (DPH)

The purpose of the dynamic penetration test is to determine in situ the resistance of a soil or soft rock to dynamic cone penetration. The penetration resistance is defined as the number of blows required to drive the penetrometer a defined distance. It shall be recorded continuously as a function of depth. The method does not involve sampling.

The dynamic penetration test equipment must be placed vertically so that it is not displaced during the test. The inclination of the device and the beating rods shall not exceed more than 2% from vertical. If this criterion cannot be met, the penetration test shall be stopped.

The beating rods and the tip shall be inserted in such a way that they do not suffer excessive bending. No load must be applied to the anvil and the rods during the raising of the ram.

The rods should be inserted into the ground continuously. The frequency of strikes shall be maintained between 15 and 30 strikes per minute. For each meter penetrated the rods shall be rotated a minimum of one and one-half turns or until maximum torque is reached. The maximum torque required to rotate the rods shall be measured with a torque wrench.

The dynamic heavy penetration (DPH) tests were performed in accordance with **SR EN 1997-2:2007** (Eurocode 7: Geotechnical design. Part 2: Investigation and testing) and **EN ISO 22476-2** (Geotechnical investigation and testing — Field testing — Part 2: Dynamic probing).

The graphical interpretation of the heavy dynamic penetration tests is attached to this geotechnical study in *Appendix 5*.

For the present project the values from DPH were equivalated to N60 drops, based on kinetic energy correlations. So, in the case of non-cohesive soils, formulas from SPT were used to derive the geotechnical parameters. In the case of cohesive soils, the correlation between drops and undrained shear strength was not used, because the SPT formula is used only where split barrel sampler is used (Raymod).

3.2. Laboratory investigations

The sampling, handling and transportation of soil and groundwater samples was made in accordance with **SR EN ISO 22475-1:2021** (Geotechnical investigations and tests. Sampling methods and measurements relating to groundwater. Part 1: Technical principles for soil, rock, and groundwater sampling).

3.2.1. Soil sampling for geotechnical investigations

The soil samples obtained from the geotechnical investigations were analyzed inside of *S.C. Geo Search S.R.L. - Grad II Laboratory – Certificate of authorization no.* 4056/ISC/L01/22.06.2023.

The results of these laboratory tests will be represented on borehole logs (*Appendix 4*) and on laboratory reports (*Appendix 6*), which are attached to this desktop study.

3.2.2. Soil sampling for chemical aggressiveness determinations

During the project, soil samples were taken on the investigated site to determine its aggressiveness on concrete according to Table 6.

Borehole ID	Purpose of the work	Sample ID	depth [m] Sampling date		Lithostratigraphic unit
FS01	SPP Substation	42671	1.50-2.00	January 23, 2024	weak clayey alluvial layer
FS02	SPP Substation	42676	1.00-1.50	January 23, 2024	weak clayey alluvial layer
FS03	SPP Substation	42683	1.50-2.00	January 16, 2024	weak clayey alluvial layer
FS03	SPP Substation	42684	3.40-3.85	January 16, 2024	weak clayey alluyial layer

Table 6. Soil samples chemical aggressiveness

The soil samples obtained from the geotechnical investigations were analyzed inside of S.C. ALS Life Science Romania S.R.L. – str. Constantin Stere, no. 16, Ploiesti municipality, Prahova County.

The results of these laboratory tests will be attached to this desktop study on laboratory reports (Appendix 6) and summarized in Table 7.

	Sampling depth	Electrical Resistivity	Oxidation-Reduction Potential (ORP)	Conductivity	pH (H2O)	Chloride as Cl-	Sulfides	Acid Neutralising Capacity	Base Neutralising Capacity (BNC)	Sulfate as SO4 - Soluble	Sulfate as SO4 - Soluble
Limit of reporting	-	10.0	-	0.10	2.00	0.0010	10.00	1.0	1.0	50	500
Unit	[m]	ohm m	mV	μS/cm	pH Unit	% DW	mg/kg DW	mol/kg DW	mol/kg DW	mg/kg DW	mg/kg DW
FS01	1.50-2.00	325	367.7	34.3	8.31	0.0071	<10.0	<1.0	<1.0	< 50	< 500
FS02	1.00-1.50	343	366.6	32.5	7.91	0.0078	<10.0	<1.0	<1.0	< 50	< 500
FS03	1.50-2.00	370	361.7	30.2	7.75	0.0064	<10.0	<1.0	<1.0	< 50	< 500
FS03	3.40-3.85	308	356.7	36.2	7.14	0.0074	<10.0	<1.0	<1.0	< 50	< 500

Table 7. Chemical aggressiveness of soils in geotechnical boreholes

3.3. Groundwater

During the actual geotechnical investigations phase the groundwater level was NOT identified.

But also, in the previous investigation phases the groundwater level was identified at the following depths (Table 8):

Table 8. Groundwater depth measurements inside of boreholes

Borehole ID	Purpose of the work	Depth from ground level [m]	Туре	Lithostratigraphic unit	Date of measurements
FS01	Solar Farm	2.4	GWL*	weak clayey alluvial layer	January 25, 2024
SUB1	Substation	6	GW	-	October 21, 2022
SUB4	Substation	5.7	GW	-	October 22, 2022
SUB5	Substation	5.7	GW	-	October 21, 2022
SUB6	Substation	5.7	GW	-	October 22, 2022
SUB7	Substation	5.7	GW	-	October 21, 2022

GW = *groundwater level, measured during the execution*

 $GWL^* = groundwater\ level,\ extrapolated.$

The location of groundwater is influenced by local lithology, through the presence of sandy intercalations within the sandy alluvial complex. Their level can be influenced by variations in atmospheric precipitation as well as by the lithological distribution of sandier levels that have higher permeability.

4. Geological and geotechnical characterization of studied area

The final lithological sequence elaborated based on field observations and laboratory determinations is shown in the borehole logs shown in *Appendix 4*.

Based on field observations and laboratory tests, the identified layers were classified into geotechnical complexes in order to characterize the earth massif and develop the terrain model.

The classification and characterization of intercepted soils during the geotechnical investigations was made based on **SR EN ISO 14688-2:2018** (*Geotechnical investigations and tests*. *Identification and classification of soils. Part 2: Principles for a classification*).

The following lithostratigraphic units were identified on the investigated area: *topsoil layer*, *clayey alluvial layer*, *weak clayey alluvial layer and granular alluvial layer*.

These units are geological complexes defined based on stratigraphic criteria and are not lithological homogeneous. The geotechnical characterization is conducted on the predominant lithologies in each complex.

The intercepted lithological complexes are described in more detail below, and the minimum, maximum and average values of the geotechnical parameters, as well as the lower and upper characteristic values, are presented in table form. These parameters are calculated according to *NP122:2010*.

4.1. Topsoil layer

On the investigated site, a thin layer of topsoil was identified, intercepted in all geotechnical boreholes, with a thickness between $0.20 \div 0.80$ m. The thickness of topsoil was considered the one described by our field geologists.

This layer is composed of firm, low organic, brown sandy CLAY.

Due to the variable origin and thickness as well as high heterogeneity, **direct foundation of buildings in this layer is NOT recommended**.

4.2. Alluvial deposits

Alluvial deposits were formed over the base layer, from detritus material transported with flowing waters, and deposited on the bottom of the riverbed, on the meadow or at the mouth.

Depending on the predominant lithology the following complexes have been separated: clayey alluvial layer, weak clayey alluvial layer, and granular alluvial layer, which will be described separately.

4.2.1. Clayey alluvial layer

The clayey alluvial layer was identified in all geotechnical boreholes in current investigation phase, under the topsoil layer, on a thickness varying between $1.60 \div 3.00$ m.

This layer is composed of *firm to stiff, low to medium plasticity, greyish-reddish-brown sandy CLAY, locally with gravel intercalations*. From a lithological and structural point of view, these sequences are characterized by **high heterogeneity**.

Fig. 14. FS04+DPH, $1,30 \div 1,50 \text{ m} - \text{clayey alluvial layer}$

Fig. 15. FS05+DPH, $1,50 \div 1,70 \text{ m} - clayey alluvial layer}$

Fig. 16. FS06+DPH, 1,70 \div 2,00 m – clayey alluvial layer

Fig. 17. FS07+DPH, $1,50 \div 1,70 \text{ m} - \text{clayey alluvial layer}$

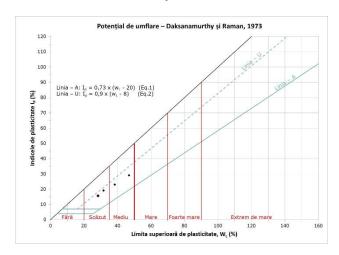

Statistically analyzed physical parameters for *clayey alluvial layer* can be found in Table 9.

Table 9. Statistical processing of physical parameters for clayey alluvial layer

	Water content	Plasticity index	Consistency index	Bulk unit weight	Saturated unit weight	Void ratio	Degree of saturation	Free swelling	Activity index	Liquidity index
	w	$\mathbf{I}_{\mathbf{p}}$	I_c	γ	γsat	e	S_r	\mathbf{U}_{L}	$\mathbf{I}_{\mathbf{A}}$	I_L
	[%]	-	-	$[kN/m^3]$	$[kN/m^3]$	-	[%]	[%]	•	-
No. sample	4	4	4	4	4	4	4	4	4	4
Vx	0.228	0.266	0.078	0.021	0.029	0.124	0.107	0.236	0.085	0.282
Min. value	14.79	15.68	0.74	18.76	19.15	0.55	73	60	0.51	0.13
Average value	19.48	21.78	0.78	19.24	19.93	0.64	82	76	0.56	0.22
Max. value	25.20	29.18	0.87	19.58	20.56	0.74	90	100	0.62	0.26

Given the physical parameters, the *clayey alluvial layer* has a low to medium swelling potential (Fig. 18), and a medium to high (Fig. 19) with maximal determinate value for free swelling $U_L = 100\%$, and activity index $I_A = 0.62$, thus falling into the active category.

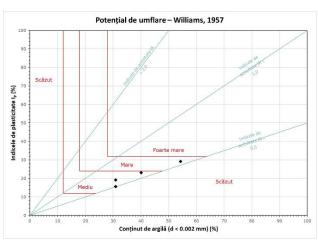


Fig. 18. Swelling potential Daksanamurthy, Raman [2] – *clayey alluvial layer*

Fig. 19. Swelling potential Van Der Merwe [10] – *clayey* alluvial layer

To verify the real swelling potential, **swelling pressure** tests were made. The highest determined value is **9.40 kPa**, therefore the *clayey alluvial layer* **falls into the category of PUCM soils (swelling and contracting soils) with low activity.**

Statistically analyzed mechanical parameters for *clayey alluvial layer* can be found in Table 10.

	Oedometric deformation modulus	Swelling pressure	Effective angle of friction - peak	Effective cohesion - peak	Post-peak eff. angle of friction	Post-peak eff. Cohesion
	E200-300	p ս	φ'	c`	ф'рр	c'pp
	[kPa]	[kPa]	[°]	[kPa]	[°]	[kPa]
No. sample	2	2	2	2	2	2
Min. value	14286	0.40	25.53	19.60	24.81	8.16
Average value	14719	4.90	27.54	27.47	26.88	18.31
Max. value	15152	9.40	29.55	35.34	28.96	28.46

Table 10. Statistical processing of mechanical parameters for clayey alluvial layer

4.2.2. Weak clayey alluvial layer

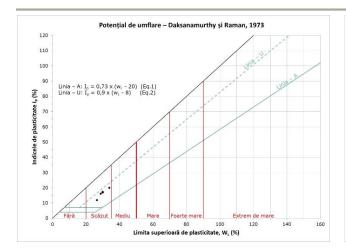
Within the clayey alluvial layer, areas with weaker characteristics were identified with thicknesses varying between $2.10 \div 4.00$ m. This layer was identified only in previous investigation phase (January 2024) and is composed of *firm*, *low plasticity*, *yellowish-brown locally grey sandy CLAY*, *locally with sandy nests/intercalations*.

From a lithological and structural point of view, these sequences are characterized by **high heterogeneity**.

Fig. 20. FS01, $2,00 \div 2,40 \text{ m}$ – weak clayey alluvial layer

Fig. 21. FS03, $3,00 \div 3,40 \text{ m}$ – weak clayey alluvial layer

Given the high lithological heterogeneity of the alluvial layer, it is recommended to consider the most unfavorable values of physical and mechanical parameters (conservative values).


Statistically analyzed physical parameters for *weak clayey alluvial layer* can be found in Table 11.

	Water content	Plasticity index	Consistency index	Bulk unit weight	Saturated unit weight	Void ratio	Degree of saturation	Free swelling	Activity index	Liquidity index
	W	Ip	$\mathbf{I}_{\mathbf{c}}$	γ	γ _{sat}	e	Sr	$\mathbf{U}_{\mathbf{L}}$	IA	$I_{\rm L}$
	[%]	-	-	[kN/m ³]	[kN/m ³]	-	[%]	[%]	-	-
No. sample	4	4	4	4	4	4	4	3	4	4
Min. value	18.93	11.88	0.59	18.64	19.69	0.68	74	50	0.38	0.34
Average value	19.70	16.28	0.62	18.92	19.83	0.70	77	63	0.50	0.38
Max. value	20.67	20.02	0.66	19.02	19.95	0.72	81	70	0.55	0.41

Table 11. Statistical processing of physical parameters for weak clayey alluvial layer

Given the physical parameters, the *weak clayey alluvial layer* has a low swelling potential (Fig. 22), and medium (Fig. 23) with maximal determinate value for free swelling $U_L = 70\%$, and activity index $I_A = 0.55$, thus falling into the medium active category.

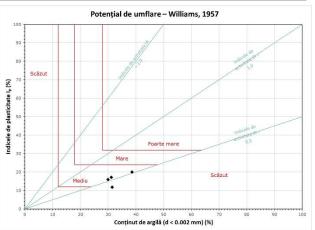


Fig. 22. Swelling potential Daksanamurthy, Raman [2] – weak clayey alluvial layer

Fig. 23. Swelling potential Van Der Merwe [10] – weak clayey alluvial layer

To verify the real swelling potential, **swelling pressure** tests were made. The highest determined value is **5.00 kPa**, therefore the *weak clayey alluvial layer* **falls into the category of PUCM soils (swelling and contracting soils) with low activity.**

Statistically analyzed mechanical parameters for *weak clayey alluvial layer* are found in Table 12.

	Oedometric deformation modulus	Swelling pressure	Effective angle of friction - peak	Effective cohesion - peak	Post-peak eff. angle of friction	Post-peak eff. Cohesion	Undrained shear strength – SPT
	E200-300	$\mathbf{p}_{\mathbf{u}}$	φ'	c`	ф'рр	c'pp	Cu_SPT
	[kPa]	[kPa]	[°]	[kPa]	[°]	[kPa]	[kPa]
No. sample	3	3	3	3	2	2	1
Min. value	6135	0.00	25.16	8.32	23.12	5.72	-
Average value	6218	2.13	26.56	13.94	24.73	6.69	90
Max. value	6309	5.00	27.32	22.08	26.33	7.66	_

Table 12. Statistical processing of mechanical parameters for weak clayey alluvial layer

4.2.3. Granular alluvial layer

The granular alluvial layer consists of dense (D_R =65÷85%), brown sandy GRAVEL with cobble, locally with clayey intercalations/matrix and dense (DR=78%), yellowish-brown silty/clayey SAND with gravel.

This layer was identified by all geotechnical boreholes from the depth of $2.30 \div 4.30$ m from execution level. The actual thickness of granular layer is not precisely known, because the boreholes that intercepted were stopped in it.

The mechanical and physical parameters for this unit were obtained from in-situ test like standard penetration (SPT) and dynamic heavy penetration (DPH). The obtained results were statistically processed and will be presented in Table 13:

Table 13. Characteristic values for alluvial gravely layer

	Water content	Bulk density	Relative density	Internal friction angle	Deformation modulus
	W	γ	D _R *	φ'*	$\mathbf{E_s}$ *
	[%]	$[kN/m^3]$	[%]	[°]	[kPa]
No. of samples	5	9	9	9	9
Vx	0.297	0.037	0.124	0.060	0.372
Min. value	7.89	19.77	56	34.00	10336
Average value	11.89	21.39	79	39.78	43565
Max. value	17.20	21.93	85	41.00	58680
$X_{k \text{ lower}}$	8.53	20.90	73	38.29	33432
$X_{k \text{ upper}}$	15.26	21.89	-	-	53698

^{*}Values derived from SPT and DPH tests

5. Assessment of geotechnical information

5.1. Recommended values of allowable bearing pressure according to NP112-2014

The allowable bearing pressure \bar{p}_{conv} [kPa] presented in this chapter is in accordance with **Appendix D, NP 112-2014.** These values are valid for a foundation width of **B** = **1.00 m** and a final depth of **D**_f = **2.00 m**. For other dimensions of foundations, or other depths corrections factors according to the norm must be applied. The values for allowable bearing pressure were determinate based on plasticity index (I_P), consistency index (I_C) and void ratio (e).

Lithological complex	recommended pconv [kPa]
Clayey alluvial layer	350
Weak clayey alluvial layer	250
Granular alluvial layer	550

Table 14. Allowable bearing pressure

This allowable bearing pressure can be used for **predesigning of foundation**, or even for **final design**, only if all conditions for **Table I4** from **NP112-2014** norm are respected. If conditions from Table I4 cannot be respected, the allowable bearing pressure must be determined according to **SR EN 1997-1-2004 and NP 112-2014**, based on bearing capacity of the soil and settlement limitations.

These allowable bearing pressures are used in general for foundation of buildings, and not for foundations of solar farms, but can be used without a problem if the conformation of a designed foundation is similar to one of a building.

5.2. Recommended values

Through this geotechnical report, for each intercepted lithostratigraphy layer were realized the statistical processing of laboratory results.

In accordance with NP074-2022, appendix C, chapter 2.4, paragraph g) during the geotechnical design, shall be determined and used the characteristic values and appropriated calculations of geotechnical parameters, based on the values presented in the geotechnical study, in accordance with NP 122. These values will be chosen depending on the designed geotechnical structure and the analyzed limit states.

The recommended values presented in Table 15 are values chosen in accordance with statistical processing and the observations during the geotechnical investigations (field descriptions, laboratory primary descriptions etc.), to provide an overview for the identified lithological layers.

Table 15. Recommended values

	Water content	Plasticity index	Consistency index	Bulk unit weight	Saturated unit weight	Void ratio	Degree of saturation	Free swelling	Oedometric deformation modulus	Swelling pressure	Effective angle of friction	Effective cohesion	Post-peak eff. angle of friction	Post-peak eff. cohesion	Undrained shear strength	Relative density	Internal friction angle	Linear deformation
	w	I_p	I_c	γ	γsat	e	S_r	U_{L}	E ₂₀₀₋₃₀₀	Pu	φ'	c`	ф'рр	c'pp	c_{u}	D_{R^*}	φ'*	$\mathbf{E}_{\mathbf{s}^*}$
	[%]	-	-	[kN/m ³]	[kN/m ³]	-	[%]	[%]	[kPa]	[kPa]	[°]	[kPa]	[°]	[kPa]	[kPa]	[%]	[°]	[kPa]
Alluvial layer	19	21	0,78	19,2	19,9	0,6	90	100	14700	9,4	27,5	27,4	26,8	18,3	-	-	-	-
Weak alluvial layer	20	16	0.6	18.9	19.8	0.7	77	70	6200	5	26.5	14	24.7	6	90	-	-	-
Granular alluvial layer	11	-	-	21.9*	-	-	-	-	-	-	-	-	-	-	-	73	38	53700

^{*}Values derived from SPT and DPH tests

5.3. Final classifications of geotechnical category

The final classification of geotechnical category is made in accordance with **NP 074** – **2022.** The final score for this phase of investigation is showed in Table 16.

Table 16. The final classification in geotechnical category (NP 074-2022)

Factors considered Description		Reason	Score				
Field conditions	Medium soils	Soils with low activity regarding swelling and contraction	3				
Groundwater	No dewatering	Infiltration groundwater level 2.40 ÷ 6.0080 m	1				
Classification of the construction according to its relevance category	Normal	In accordance with Terms of reference	3				
Vicinities	Without risks	the proposed construction does not represent a risk for the neighbors	1				
Geotechnical risk points correspondir area, having the value of land accelera a(g) defined in P100-1/2013 Code	•	$a_g < 0.15$	1				
Total scoring							
	eotechnical categ	gory	1				

5.4. Framing land categories stipulated by the regulations relating to earth works

Framing the land for earth works is done according to Table 17:

Table 17. Land framing in estimate norms according to Romanian legislation - TS - MLPAT 1994

Soil type	Position in Guide	Manual excavation	Mechanized excavation	Medium bulk density (in excavation) kg/cm	Loosening after excavation%
Topsoil until 0,30 m depth	3	Easy	I	1200-1400	14-28
sandy CLAY with a maximum 10% gravel content	10	Hard	II	1600-1800	26-32
sandy GRAVEL	18	Hard	II	1750-2000	14-28
silty SAND	13	Medium	II	1500-1700	8-17
Clay in general	27	Very hard	II	1800-2000	24-30

5.5. Foundation conditions for future construction

The chapters below present the recommendations regarding the minimum foundation depth, the related foundation layer, and the foundation system for each work purpose.

Table 18. Depths / foundation layer

Minimum depth foundation Designed Ground Level	Foundation layer	Foundation system	Observations
-2,00 m (zone FS01, FS02, FS03)	Weak clayey alluvial layer	Direct foundation Continuous, isolated	Direct foundation on topsoil is not recommended A foundation depth between 1,1 m and
-2,00 m (zone FS04, FS05, FS06, FS07)	Clayey alluvial layer	Depending on the structural system	2,00 m can be chosen if mentions from NP126-2010 regarding foundations in seasonal variation zone are being respected.

^{*} The clayey alluvial layer is considered a PUCM soil, so compliance with the provisions of the NP 126-10 norm – "Normative on the foundation of constructions on land with large swelling and contractions" will be pursued.

Frost susceptibility evaluation and quality assessment of soils identified as terracing material

The classification of the intercepted soil types regarding frost susceptibility and quality as earthworks material was done for each identified lithology type according to **SR EN ISO 14688-1/2004**, **STAS 2914-1984 and STAS 1709/2-90**. For lithologies where no samples were analyzed, the classification was based on field and laboratory description of the samples and on assimilation with similar samples for which laboratory analyses were performed.

Table 19. Frost susceptibility evaluation and quality assessment of soils identified as terracing material

ID	Layer tickness [m]	Lithostratigraphic units	thostratigraphic units Symbol Soil quality as terracing material		Soil type	Frost sensibility	
	[111]		STAS 29	214- 1984	STAS	1709/ 2-90	
	0.30	topsoil layer	4a/4d	Bad/Medium	P5	Very sensible	
FS01	2.10	weak clayey alluvial layer	4a	Medium	P5	Very sensible	
F 501	1.60	granular alluvial layer	3a/3b	Medium	P5	Very sensible	
	4.00	granular alluvial layer	1b	Very good	P1	Insensitive	
	0.20	topsoil layer	4a/4d	Bad/Medium	P5	Very sensible	
FS02	3.40	weak clayey alluvial layer	4a	Medium	P5	Very sensible	
	4.40	granular alluvial layer	1b	Very good	P1	Insensitive	
	0.30	topsoil layer	4a/4d	Bad/Medium	P5	Very sensible	
FS03	4.00	weak clayey alluvial layer	4b	Medium	P5	Very sensible	
	3.70	granular alluvial layer	1b	Very good	P1	Insensitive	
EG0.4	0,80	topsoil layer	4a/4d	Bad/Medium	P5	Very sensible	
FS04+ DPH	1,60	clayey alluvial layer	4a	Medium	P5	Very sensible	
Drn	1,40	granular alluvial layer	1b	Very good	P1	Insensitive	
TG0.	0,70	topsoil layer	4a/4d	Bad/Medium	P5	Very sensible	
FS05+ DPH	1,60	clayey alluvial layer	4b	Medium	P5	Very sensible	
DPH	1,20	granular alluvial layer	1b	Very good	P1	Insensitive	
FS06+	3,00	topsoil layer	4a/4d	Bad/Medium	P5	Very sensible	
DPH	0,90	granular alluvial layer	1b	Very good	P1	Insensitive	
T:00=	0,40	topsoil layer	4a/4d	Bad/Medium	P5	Very sensible	
FS07+ DPH	2,80	clayey alluvial layer	4b	Medium	P5	Very sensible	
DPH	0,70	granular alluvial layer	1b	Very good	P1	Insensitive	

5.5.1. Constructive measures in case of foundations at the minimum foundation depth (NP126-2010):

- The entering and leaving water pipes on the buildings shall be provided with elastic and watertight connections when crossing walls or foundations. It is advisable that inside the buildings the pipes will be mounted in the basement, respectively on the first level in the case of constructions are without a basement. So, they are accessible for the periodical control to be carried out, or for reparations that can be carried out as soon as any leakage is detected.
- Making airtight sidewalks around the buildings with a minimum width of 1.00 m, to be laid on a 20.0 cm thick layer of stabilized soil with a slope of 5% outwards. To be airtight, the pavement can be made of poured asphalt or stone or concrete slabs with cement mortar or bituminous mask.
- The building annexes (staircases, terraces, etc.) shall be found at the same depth as the respective constructions, to avoid their degradation due to different settlements or swelling from one point to another. Depending on the tendencies and possibilities of ground deformation by shrinkage or swelling, they will either be directly connected to the building by rigid tie or will be completely separated and treated independently.
- Drainage of surface water and landscaping of the surrounding land with outward drainage slopes. Roof drainage should be provided by downpipes, specially designed for this purpose, with secured outlets and preferably directly into the sewerage system. Vertical systematization measures should avoid stagnation of surface water at distances of less than 10,0 m around each building.

Constructive measures in case of foundation at a depth included in the seasonal humidity variation zone (NP126-2010) - The case of foundation at 1.50 m compared to stabilized ground surface:

- Making airtight sidewalks around the buildings with a minimum width of 1.50 m, to be laid on a 20.0 cm thick layer of stabilized soil.
- To reduce ground swelling, increase the effective pressure on the foundation to match the swelling pressure determined from multiple oedometric tests, without surpassing the ground's bearing capacity.
- The construction of supporting structures or constructive measures to take up the non-uniform loads or displacements caused by the moistening or drying of the foundation layer, such as the construction of steel reinforced concrete belts, continuous along the entire length of the exterior and interior walls, load bearing or load bearing, located at each level of the construction, including the base.

5.5.2. General recommendations for execution of foundations for future buildings

Recommendations for execution of excavations and supports.

When carrying out excavations for foundations, the following should be considered:

- maintaining the natural balance around the foundation pit or existing foundations for a sufficient distance so as not to jeopardize neighboring installations and constructions.
- When concrete is not poured into the foundation immediately after finishing the execution of the excavation, in water-sensitive soils, the digging will be stopped at a

higher elevation than the final elevation to prevent changes in the physical and mechanical characteristics of the layer under the base of the foundation.

The need to support the walls of the foundation excavations will be determined considering the depth of the excavation, the nature, homogeneity, stratification, cohesion, crack intensity, ground humidity, the groundwater flow rate, the weather and climatic conditions during the execution of the excavation works, and the execution technology adopted.

Excavations of long lengths for foundations shall be organized in such a way that, at any stage of work, the bottom of the excavation is inclined to one or more points, to ensure water collection during execution.

It will be considered that the exhaust works do not produce changes in the stability of the earth massifs in their area of influence, or damage due to the underside of the neighboring installations, constructions and building elements.

Collection wells shall not be placed under the foundations of buildings or heavy machinery or plants for drainage purposes.

Excavations to be carried out with excavators may not exceed the designed excavation profile in any case. For this purpose, the excavation should stop 20-30 cm above the final excavation profile, the difference being executed with other mechanical equipment (bulldozers, rakes) or manually.

In the case of water sensitive surfaces, the foundation excavation shall stop at a higher level than the one specified in the project, as follows:

- for fine sands 0,20 to 0,30 m.
- for clayey soils 0,15 to 0,25 m.
- for wetting sensitive soil 0,40 to 0,50 m.

Digging and finishing this layer will be done immediately before the start of the execution of the foundation.

In case of shallow wetting, due to unforeseen atmospheric precipitation, the bottom of the foundation pit should be allowed to wrinkle before the start of work on the execution of the foundation (concreting), and if the wetting is strong, the mud layer will be removed.

In case of excavations near existing or ongoing constructions, special measures will be provided by the project to ensure their stability (support for existing foundations or constructions, underbuilding in case of deeper excavations, etc.).

If these works have been omitted from the project, the contractor is not absolved of the obligation to investigate the existing foundations and immediately take measures to ensure the stability of these constructions, immediately notifying the beneficiary and the designer of the work to establish the appropriate measures.

Excavations above groundwater level with unsupported vertical walls

Excavations with unsupported vertical walls can be carried out with depths up to:

- 0,75 m in the case of non-cohesive and weakly cohesive soils.
- 1,25 m for medium cohesion soil.
- 2,00 m for very cohesive soil.

In the case of excavations with unsupported vertical walls, the following measures shall be taken to maintain the stability of the banks:

- The land around the excavation is not allowed to be loaded and does not suffer vibration.
- The soil resulting from digging should not be deposited at less than 1,00 m from the edge of the foundation pit; for excavations up to 1.00 m deep, the distance can be taken equal to the depth of the excavation.
- Measures shall be taken to remove rapidly the rainwater or accidental waters.
- If, for unforeseen reasons, the foundations are not poured immediately after excavation has been completed and phenomena indicating a danger of subsidence are observed, measures will be taken to support the wall in the area in question or to convert them into walls with a slope.

The constructor is obliged to monitor the appearance and development of longitudinal cracks parallel to the edge of the excavation which may indicate the beginning of bank subsidence and to take measures to prevent accidents.

Excavations above groundwater level with walls in the slope

These excavations can be carried out in any kind of terrain under the following conditions:

- The soil has a natural humidity of 12-18% and conditions are provided so that it does not grow.
- foundation excavation does not stay open for long.

Nature of soil	up to 3 m	greater than 3 m
tg B =	tg B = h/b	
sand, gravel	1/1,25	1/1,50
clayey sand	1/0,67	1/1
sandy clay	1/0,67	1/0,75
clay	1/0,50	1/0,67
loess	1/0,50	1/0,75

Table 20. Bank slope depending on depth.

In the rest of the cases, excavations can only be done under the protection of supports.

5.5.3. Design of surface foundations

The following boundary conditions must be considered in the geotechnical design of surface foundations:

- A) GEO-type ultimate limit states, characterized by:
- loss of general stability.

- exhaustion of bearing capacity, failure by punching.
- failure by sliding.
- combined ground failure.
- combined failure in ground and structure.
- B) The STR-type ultimate limit state, characterized by large, amortized displacements of the foundations, may manifest in structural failure.

At the ultimate limit state, the design model should simulate the failure mechanism as best as possible:

- For the calculation of the bearing capacity, the method based on an analytical calculation model presented in Annex F to NP 112 is used.
- For the verification against failure by sloping on the base, which must be carried out when the loading is not normal on the base of the foundation, the method presented in point. I.6.2 of NP 112.
 - C) Limit states of service may be manifested by:
- excessive settlement.
- excessive ground lift due to swelling, frost, and other causes.
- unacceptable vibration.

At the limit state of operation, a settlement calculation is required. The calculation methods used are:

- The method of cumulated settlement on elementary layers (Appendix H to NP 112).
- Methods based on solutions from elasticity theory for the calculation of settlement (Appendix F to SR EN 1997-1), respectively for the calculation of the slope of rectangular, circular, or continuous foundations (Appendix H to NP 112).

When executing the works, the dispositions of the current legislation regarding the quality, durability, stability, and safety in functioning of constructions and installations related to Law no. 10/1995 will be respected.

6. Bibliography

- [1] Băcilă, I. et. all, 1979. Geologie inginerească Vol I., editura Tehnică București.
- [2] Daksanamurty, V., Raman, V., 1973. A simple method of identifying an expansive soil. Soils and Foundation, Jap. Soc. Soil Mech. Found. Eng., 13(1):97-104.
- [3] Filipescu, S. 2011. Cenozoic lithostratigraphic units in Transylvania. In: Bucur I. & Săsăran E. (eds.)- Calcareous algae from Romanian Carpathians. Field trip Guidebook. Presa Universitară Clujeană.
- [4] Krézsek, Cs., Bally, A.W. 2006. The Transylvanian Basin (Romania) and its relation to the Carpathian fold and thrust belt: Insights in gravitational salt tectonics. Marine and Petroleum Geology, volume 23, issue 4, pp. 405-442.
- [5] Păunescu, M., Pop, V., Silion, T., 1982, Geotehnică și Fundații, Editura Didactică și Pedagogică, București.
- [6] Popa, A., Ilieş, N.M., 2012. Fundații, Editura Casa Cărții de Știință, Cluj-Napoca, p. 307-309.
- [7] Posea, G., 2005. Geomorfologie României. Relief: tipuri, geneză, evoluție, regionare. Ediția a II-a București, Editura Fundației România de Mâine.
- [8] Raileanu. Gr., Rădulescu. D., Marinescu. Fl., Peltz. S. 1967. Explanatory note to the Geological Map of Romania. Scale 1:200,000, sheet L-35-VII, Bistriţa. State Committee of Geology. Geological Institute. Bucharest.
- [9] Roman, F., 2011. Aplicații de inginerie geotehnică, Editura Papyrus Print, Cluj-Napoca, p 19.
- [10] Van Der Merwe, D.H. 1975. Contribution to Specialty Session B, Current Theory and Practice for Building on Expansive Clays. Proceedings of the 6th Regional Conference for Africa on Soil Mechanics and Foundation Engineering, Durban, 2:166-167.

ANEXA 1

CONŢINUT:

• Tema pentru elaborarea studiului geotehnic

TERMS OF REFERENCE

to perform geological surveys for Glodeni 2 Solar power plant in Romania:

List of basic data and requirements	Basic data and scope of requirements
1. Full name of the object	Glodeni 2 Solar Farm 49.9 MW AC
2. Location of the object (by administrative division)	Municipality Voivodeni and Glodeni, County Mures, Romania
3. The customer	DTEK RENEWABLES INTERNATIONAL B.V
4. Design stage	Proiect Tehnic (P.T.) stage
	Detalii de Executie (D.E.) stage
5. Information on the availability of materials of engineering and geological surveys of previous years	Provided by the Customer. There is a geotechnical report for Glodeni Solar Farm, Glodeni village, Mures county and for SS Glodeni 110/33kV (Cadastral number is 50606), performed by SAIDEL Engineering SA in 2023.
6. Special requirements for research	Solar farm:
results	It is planned to drill boreholes with total quantity 60 psc.
	The depth of each borehole is up to 5 m below ground level, evenly distributed over the site with a grid pattern with points at not more than 150 m distance. In case no stable soil is identified after 5 m, the drilling shall be extended until stable soil is detected. The number of samples should be -2 undisturbed samples, 2 disturbed samples but not less than three samples for each geological layer. On undisturbed samples, also the flooded test for determination of the Loess layers shall be carried out (if any).
	Access Roads: For the investigation of the solar plant access roads, it is necessary to carry out one drilling of at least 500 m, so we have 3 drillings. These drillings shall reach a depth of 5 m, and 2 disturbed soil samples shall be taken from each drilling but not less than two samples for each geological layer.
	The SPP Substation (Cadastral number is 50605):
	In the area of The SPP Substation three boreholes of 8 m depth with disturbed and undisturbed samples (2 undisturbed samples, 2 disturbed samples but not less than three samples for each geological layer).
	The exact locations of boreholes and should be clarified and agreed with the Customer before execution of works.
	General requirements to Geotechnical survey:

- Perform for each layer of soil at least three times the full set of physical and mechanical properties of soils with shear and compression tests, as well as the list but not limited to:
 - ✓ Natural humidity (W)
 - ✓ Plasticity index (Ip)
 - ✓ Plastic limit (Wp)
 - ✓ Liquidity index (I_L) at natural humidity and full watersaturated state
 - ✓ Liquidity limit (wL).
 - ✓ Soil void ratio (e)
 - ✓ Degree of humidity (Sr)
 - ✓ Density (ρl, ρll)
 - ✓ Density of dry soil (pd)
 - ✓ Static modulus of deformation (E)
 - ✓ Angle of shearing of soil (φI, φII)
 - ✓ Ground cohesion (cl, cll)
- For soils with special properties (if any) additionally determine (depending on the properties), but not limited to:
 - ✓ Relative swelling deformation (Esw)
 - ✓ Humidity relative swelling deformation (Wsw)
 - ✓ Soil swelling pressure (Psw)
 - ✓ Initial subsidence pressure of forest-like subsidence soil (PsI)
 - ✓ The angle of internal friction of water-saturated forest-like subsidence soil (φsat)
 - ✓ Specific adhesion of water-saturated forest-like subsidence soil (Csat)
 - ✓ Module of deformation of water-saturated forest-like subsidence soil (Esat)
 - ✓ Other physical and mechanical properties in a state of complete water saturation
 - ✓ Provide a calculation of the type of soil conditions for subsidence
- Perform a standard chemical analysis of groundwater (if available) and chemical analysis of water extract from the soil (soil aggressiveness) of at least 10 samples at Solar Farm plot and at least 3 samples of groundwater at SS plot in order to determine its aggressiveness on concrete and metal.

Soil and groundwater corrosion tests:

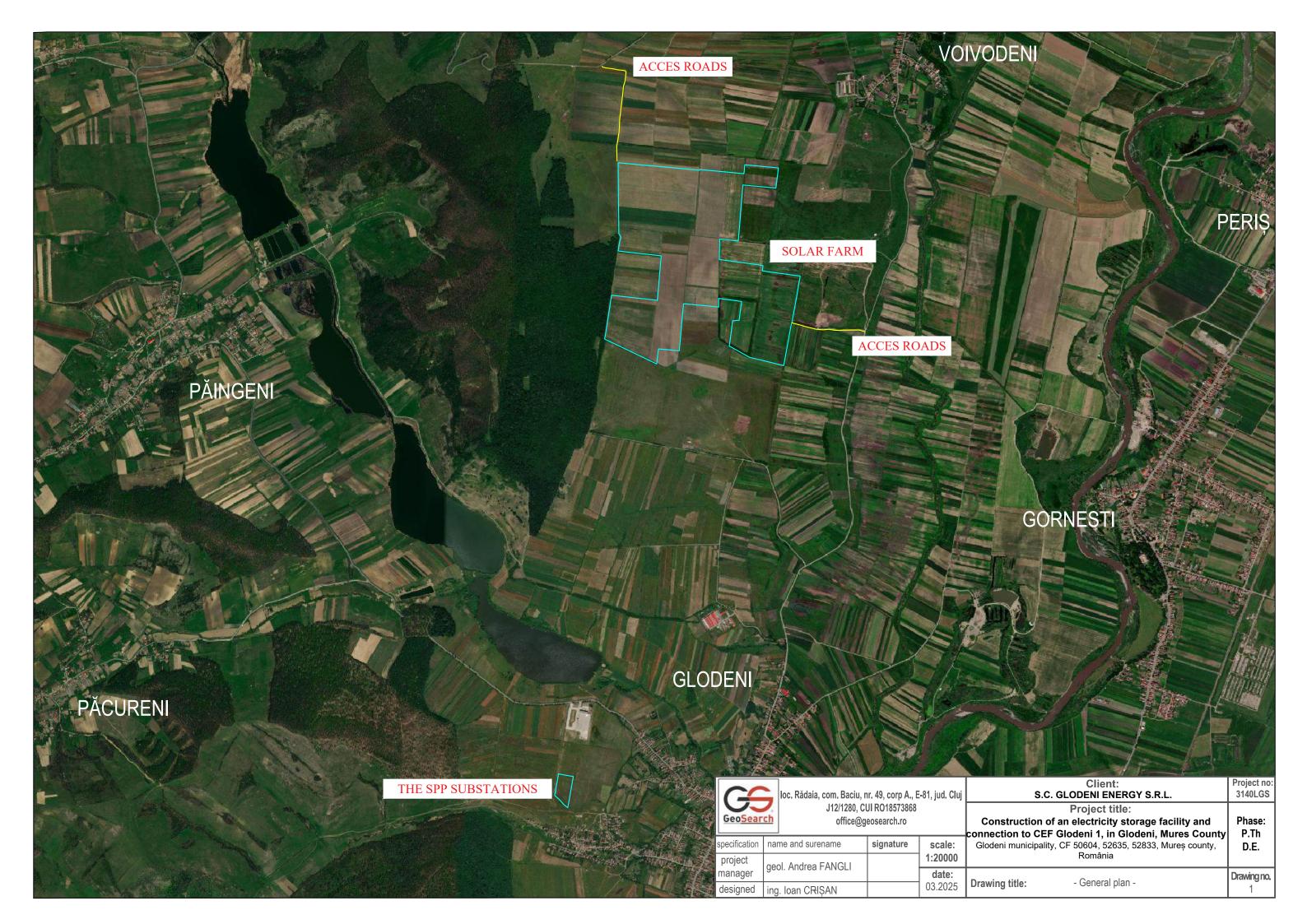
- Specific electrical resistance of the soil (Electrical Resistivity)
- Oxidation-Reduction Potential(ORP)
- Chloride content (CI)
- Sulfide content (S2-)
- Sulfate content (SO4)
- Sulphate and chloride concentration in H2O-extract
- Sulphate concentration in the HCl-extract
- Redox potential
- Acid and base capacity
- pH (H2O)

	other, required by national standards
	Define the soil corrosivity class by I, II III according to follow the norm DIN 50929-3:2018-03 or other local requirements. Indicate groundwater chemical aggressiveness on concrete and metal, according to SR 13510:2006.
	 Make engineering - geological sections according to geological research to make decisions on the location and design of roads and transformers foundations; Provide recommendations on the types of foundations, the depth of their laying, types of earthworks, etc.
7. Special requirements for documentation	The geotechnical report shall be split into two parts; the first part is written in English language and shall contain a short description of the field campaign, the measured results and the recommendations and findings for the foundation design. The second part, which is written in English and in Romanian language, will contain all the detailed results like drillings logs, sounding profiles, laboratory soil test, etc. pp. The second report will be already proofed and verified by a Romanian geotechnical expert, who is allowed to check and stamp the report.
	All graphic documents must be provided to the Customer in the *.dwg format

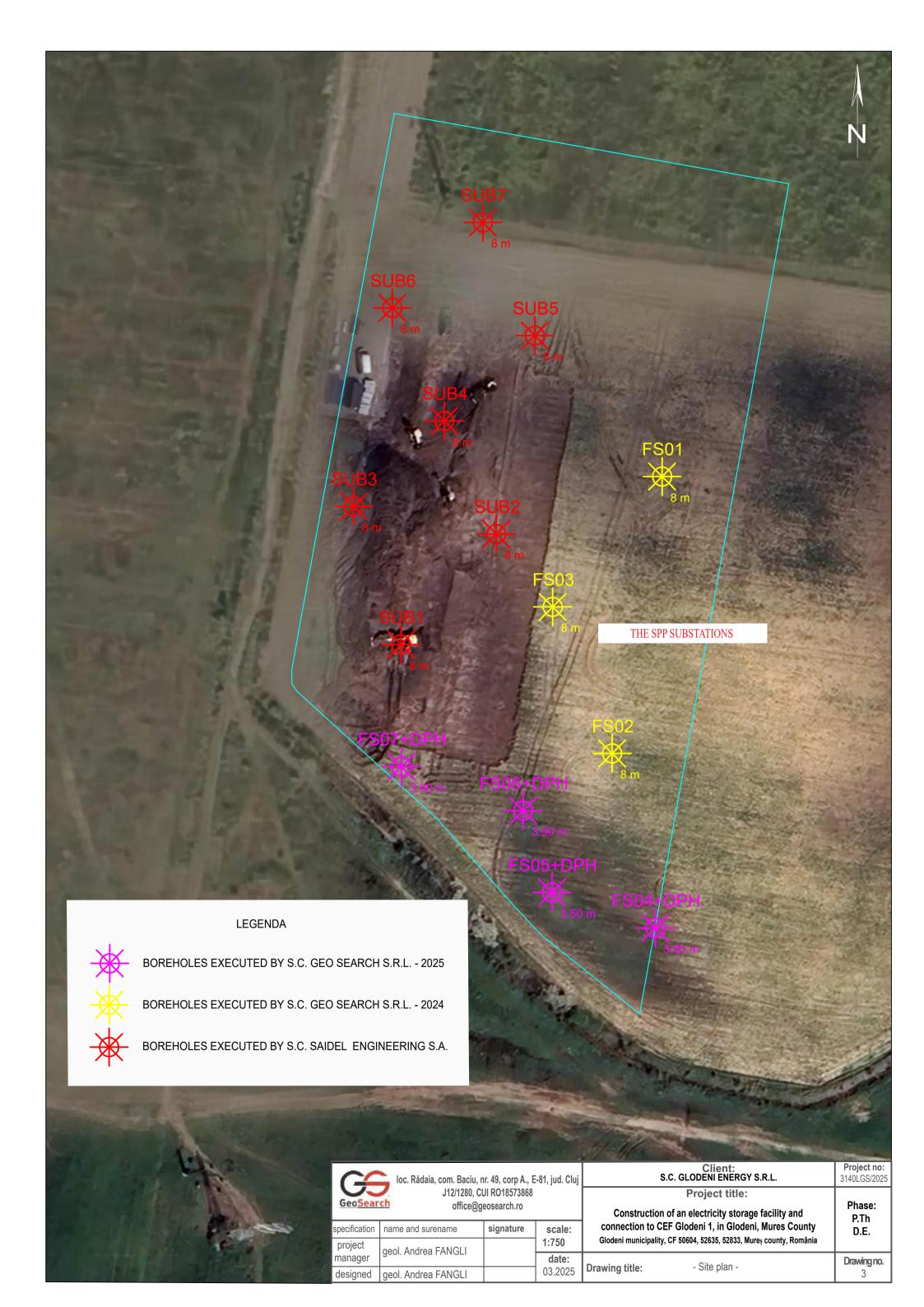
Annexes:

- 1 Solar Plant Map.
- 2 Topographic plan with boreholes at the Substations

Content


• General Plan

Content


• Site Plan

CONTENT:

• Borehole logs and columns

COORD	. (STEREO	70, N	larea	Neagră)	FIŞA FORAJULU	JI NR	2. / B	ORE	HOL	E L	OG I	NO.:	ı	FS01					СО	D / C	ODE	E: 2	819L0	3S/20	24					
X : 469296		3030.	76 Z	Z: 362.0 m	CLIENT: S.C. GLODENI EN	ERGY	S.R.L																							7
	CEPERE			IALIZARE	PROIECT/PROJECT: Consti	ruction	of an	elect	ricity	storaç	ge fac	ility ar	nd cor	nectio	on to	CEF (Glode	ni 1, ir	n Gloc	leni, N	<i>A</i> ures	Cour	nty							®
START				DATE	AMD: AGAMENT/ LOGATIO	N. Ol			Ita	. 05	F000	- 500	05 50	2000			4. D	• !								G	eo	Sea	arc	h
25-Jar		2	25-Jar	n-2024	AMPLASAMENT/ LOCATIO	N: GIC	aeni	munic	ipality	/, CF :	50604	, 526	35, 52	2833, 1	wureş	ș cour	ity, Ro	omanı 	а 					a a						
Adâncime/Depth Cotă/Elevation	Complex geotehnic ::100	Nivel apă/Groundwater level	SPT – N60		ere detaliată escription	Cod probă Sample code	Argilă Clay	Praf Silt	Nisip Sand	Pietriș Gravel	Umiditate naturală Water content	Limita de curgere Liquid limit	Limita de plasticitate Plastic limit	Indice de plasticitate Plasticity index	Indice de consistență Consistency index	Greutatea vol. naturală Bulk unit weight	Indicele porilor Void ratio	Gradul de saturație Degree of saturation	Umflarea liberă Free swelling	Unghi de forfecare internă efectiv Effective angle of friction	Coeziune efectivă Effective cohesion	Unghi de forf. int. ef. post-cedare Post-peak eff. angle of friction	Coeziune efectivă post-cedare Post-peak eff. cohesion	Modul edometric (200 kPa-300 kPa) Oed. modulus (200 kPa-300 kPa)	Presiunea de umflare Swelling pressure	Rez. Ia forfecare nedrenată Undrained shear strength	Rez. la forfecare nedrenată - SPT Undrained shear strength - SPT	Unghi de forfecare internă ef SPT Effective angle of friction - SPT	Modul de deformație linear - SPT Soil modulus - SPT	Grad de îndesare Relative density
Adê	Cor	ž	SP.			-	CI %	Si %	Sa %	Gr %	w %	wL %	wP %	lp %	lc –	γ kN/m3	e -	Sr %	UL %	φ	c kPa	фрс	cpc kPa	M2-3 MPa	pu kPa	cu kPa	cu-SPT kPa	φ-SPT °	Es MPa	ID %
0 362 1 361 2 360	ts w-cl-al	NAS			OPSOIL: firm, brown sandy silty CLAY m, low plasticity yellowish-brown																									
+		2.4	17.3	24 – 4 0m: lo	w plasticity, yellowish-brown	42672	31.15	25.42	43.18	0.25	19.62	29.93	12.78		0.6	18.64	0.72	74	50	27.32	8.32	26.33	5.72	6.2	0.0	-	-	-	-	-
3 359	gr-al	2.4	17.3	clayey SAND		_	=	=	=	=	-	=	=	-	=	19.77*	=	=	=	-		-	-	=	=	=	=	31.3	10.3	56
4358				4.0. 0.0	ery dense (DR=85%), brown sandy	42674	14.22	16.45	44.28	25.05	17.2	-	-	-	-	20.28	0.55	85	-	-	-	-	-	-	-	-		-		-
5 357			59.2	silty GRAVEL		-	-	-	-	-	-	-	-	-	-	21.92*	-	-	-	-	-	-	-	-	-	-	-	41.0	58.7	85
6 356	gr-al					42675	5.4	8.39	23.63	62.58	7.89	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
8																														

COORD	. (STERI	EO 7	'0, Ma	area N	leagră)	FIŞA FORAJULL	JI NR	2. / B	ORE	HOL	E L	OG N	NO.:		FS02	2				СО	D/C	ODE	: 2	319L0	GS/20	24					
X : 469284	.24 Y :	5729	964.0	2 Z :	361.5 m	CLIENT: S.C. GLODENI ENI	ERGY	S.R.I										<u> </u>		۵.			_					_			7
DATA ÎN START		E '			ALIZARE DATE	PROIECT/PROJECT: Constr	ruction	of an	elect	ricity	storag	ge faci	ility ar	nd cor	necti	on to	CEF (lode	1, II	n Gloc	leni, N	/lures	Coun	ty							6
25-Jar	n-2024		25	5-Jan-	2024	AMPLASAMENT/ LOCATIO	N: Glo	deni	munic	ipality	, CF	50604	, 526	35, 52	2833,	Mure	ș cour	nty, Ro	omâni	ia			ı			T	G	eo	Sea	arc	<u>n</u>
Adâncime/Depth Cotă/Elevation	<u>.0</u>	Geotechnical unit	Nivel apă/Groundwater level	7 – N60		re detaliată escription	Cod probă Sample code	Argilă Clay	Praf Silt	Nisip Sand	Pietriș Gravel	Umiditate naturală Water content	Limita de curgere Liquid limit	Limita de plasticitate Plastic limit	Indice de plasticitate Plasticity index	Indice de consistență Consistency index	Greutatea vol. naturală Bulk unit weight	Indicele porilor Void ratio	Gradul de saturație Degree of saturation	Umflarea liberă Free swelling	Unghi de forfecare internă efectiv Effective angle of friction	Coeziune efectivă Effective cohesion	Unghi de forf. int. ef. post-cedare Post-peak eff. angle of friction	Coeziune efectivă post-cedare Post-peak eff. cohesion	Modul edometric (200 kPa-300 kPa) Oed. modulus (200 kPa-300 kPa)	Presiunea de umflare Swelling pressure	Rez. la forfecare nedrenată Undrained shear strength	Rez. la forfecare nedrenată - SPT Undrained shear strength - SPT	Unghi de forfecare internă ef SPT Effective angle of friction - SPT	Modul de deformație linear - SPT Soil modulus - SPT	Grad de îndesare Relative density
Adâ	Con	Og Ge	N	SPT				CI %	Si %	Sa %	Gr %	w %	wL %	wP %	lp %	lc -	γ kN/m3	е	Sr %	UL %	φ	c kPa	фрс	cpc kPa	M2-3 MPa	pu kPa	cu kPa	cu-SP1 kPa	Γφ-SPT °	Es MPa	ID %
1	ts			1	0.2 - 3.6m: fir	OPSOIL: firm, brown sandy silty CLAY m, low plasticity, yellowish- greyish sandy CLAY																									
2	w-cl-a	1					42677	31.47	23.55	43.87	1.11	19.56	26.55	14.67	11.88	0.59	18.99	0.69	77	70	27.2	22.08	-	-	6.3	1.4	-	-	-	-	
359				19.8			-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	_	-	-
3							42679	29.95	22.52	47.53	0.0	18.93	28.84	12.79	16.05	0.62	19.02	0.68	76	-	-	-	-	-	-	-	-	-	-	-	-
4					sandy GARVE	ery dense (DR=85%), yellowis-brown iL with cobble and locally with brown clayey sandy intercalations	-	-	-	-	-	-	-	-	-	-	21.92*	-	-	-	-	-	-	=	-	-	-	-	41.0	56.3	85
5356																															
6_	gr-al]		51.3			_	-	-	-	-	-	-	-	-	-	21.92*	-	-	-	-	-	-	-	-	-	-	-	41.0	51.6	85
7 7																															
354 8							42682	5.77	3.92	28.19	62.12	13.31	-	-	-	-	-	-	=	=	-	-	=	=	=	-	-	=	-	=	-

COORD	. (STE	REO	70, M	area	Neagră)	FIŞA FORAJULU	II NR	2. / B	ORE	HOL	E L	OG N	10.:	ı	FS03	3				СО	D/C	ODE	: 2	819L0	GS/20	24					
X : 469269			2999.3	35 Z	::362.0 m	CLIENT: S.C. GLODENI ENE																									7
DATA ÎN		- 1			ALIZARE	PROIECT/PROJECT: Constr	uction	of an	elect	ricity	storaç	ge faci	lity an	ıd cor	necti	on to	CEF (Glodei	ni 1, iı	n Gloc	leni, N	/lures	Coun	ty							©
START		:			DATE	AMBI AGAMENT/ LOGATIO					05	5000 4	500						•								G	eo	Sea	arc	h
25-Jar			2	5-Jan	-2024	AMPLASAMENT/ LOCATIO	N: GIC	deni	munic	ipality	/, CF	50604	, 526	35, 52	2833,	Mures	ș cour	nty, Ro	oman	ıa I					(a)						
Adâncime/Depth Cotă/Elevation	Complex geotehnic	Geotechnical unit	Nivel apă/Groundwater level	T – N60		re detaliată escription	Cod probă Sample code	Argilă Clay	Praf Silt	Nisip Sand	Pietriș Gravel	Umiditate naturală Water content	Limita de curgere Liquid limit	Limita de plasticitate Plastic limit	Indice de plasticitate Plasticity index	Indice de consistență Consistency index	Greutatea vol. naturală Bulk unit weight	Indicele porilor Void ratio	Gradul de saturație Degree of saturation	Umflarea liberă Free swelling	Unghi de forfecare internă efectiv Effective angle of friction	Coeziune efectivă Effective cohesion	Unghi de forf. int. ef. post-cedare Post-peak eff. angle of friction	Coeziune efectivă post-cedare Post-peak eff. cohesion	Modul edometric (200 kPa-300 kPa) Oed. modulus (200 kPa-300 kPa)	Presiunea de umflare Swelling pressure	Rez. la forfecare nedrenată Undrained shear strength	Rez. la forfecare nedrenată - SPT Undrained shear strength - SPT	Unghi de forfecare internă ef SPT Effective angle of friction - SPT	Modul de deformație linear - SPT Soil modulus - SPT	Grad de îndesare Relative density
Adâ	So	Gec	N	SPT			-	CI %	Si %	Sa %	Gr %	w %	wL %	wP %	lp %	lc –	γ kN/m3	e -	Sr %	UL %	φ	c kPa	фрс	cpc kPa	M2-3 MPa	pu kPa	cu kPa	cu-SP1 kPa	Tφ-SPT °	Es MPa	ID %
0362											1															1	1	1			
1361	ts				0.3 – 4.3m: fi	OPSOIL: firm, brown sandy silty CLAY m, locally soft, low plasticity, n sandy CLAY	_																								
1 <u>+</u> 301							42685	38.57	25.44	35.88	0.11	20.67	33.84	13.82	20.02	0.66	19.02	0.7	81	70	25.16	11.42	23.12	7.66	6.1	5.0	-	-	-	1	-
2 ± 360			-	14.4			_	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	90.0	-	-	
3 359	w-cl-	-al																													
4358				34.7			_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
+ <u>+</u> 000					4.3 8.0m; d	ense (DR=82%), GRAVEL and cobble in																									
5 357 6 356					yellowish-brov intercalations	n silty sandy matrix with clayey	42689	9.27	9.58	24.5	56.65	10.22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
‡	gr-a	al	-	47.0																											\vdash
7 = 355			}	47.9			-	-	-	-	-	-	-	-	-	-	21.93*	-	-	-	-	-	-	-	-	-	-	-	41.0	48.5	82
7 <u>355</u>																															

coo	DRD.	(STEF	REO	70, M	area	Neagră)	FIŞA FORAJULL	JI NR	R. / B	ORE	HOL	E L	OG I	NO.:		FS04	l+DF	Ή			СО	D / C	ODI	E: 3	140L	GS/20	25					
X : 469	294.	.65 Y	: 572	2921.9	94 2	<u>Z:</u> –	CLIENT: S.C. GLODENI ENI	ERGY	S.R.I																							7
		CEPEF DATE				IALIZARE I DATE	PROIECT/PROJECT: Constr	uction	of ar	elect	ricity	storaç	ge fac	ility a	nd cor	nection	on to	CEF (Glode	ni 1, i	n Gloo	deni, I	Mures	Cour	nty			G		Sea		b
21	-Mar	r-2025		2	1-Ma	r-2025	AMPLASAMENT/ LOCATIO	N: Glo	odeni	munic	pality	/, CF	50604	, 526	35, 52	2833,	Mure	ș cour	nty, R		ia							9	EU	<u> </u>	ai C	.11
Scara	/Sca	ale: 1:1	00						ے ا											saturată											SPT	
Adâncime/Depth	Cotă/Elevation	Complex geotehnic	Geotechnical unit	Nivel apă/Groundwater level	1 – N60		ere detaliată description	Cod probă Sample code	Suma totală părți fine ≤0,063 mm Total of fine particles ≤0,063 mm	Argilă Clay	Praf Silt	Nisip Sand	Pietriș Gravel	Umiditate naturală Water content	Limita de curgere Liquid limit	Limita de plasticitate Plastic limit	Indice de plasticitate Plasticity index	Indice de consistență Consistency index	Greutatea vol. naturală Bulk unit weight	stare	Indicele porilor Void ratio	Gradul de saturație Degree of saturation	Umflarea liberă Free swelling	Modul edometric (200-300 kPa) Oed. modulus (200-300 kPa)	Presiunea de umflare Swelling pressure	Unghi de forf. int. efectiv Effective angle of friction	Coeziune efectivă Effective cohesion	Unghi de forf. int. ef. post-cedare Post-peak eff. angle of friction	Coeziune efectivă post-cedare Post-peak eff. cohesion	Modul de def. linear Soil modulus	ecare internă ef le of friction - SPT	Grad de îndesare Relative density
Ad	S	Ö	Ge	⋛	SPT			-	fine %	CI %	Si %	Sa %	Gr %	w %	wL %	wP %	lp %	lc -	γ kN/m3	γsat	е	Sr %	UL %	M2-3 kPa	pu kPa	φ	c kPa	фрс	cpc kPa	Es kPa	φ-SPT	ID %
									70	70	70	70	70	70	70	70	70		[KIN/III3	[KIN/III3		70	70	KFa	KFA		KFa		кга	KFa		70
=	elevation	ts				0.0 – 0.8m: T	OPSOIL: firm, brown sandy silty CLAY																									
1_	eve						tiff, low plasticity, greyish-	1																								
]		cl-al-	lv.			intercalations	i sandy CLAY, locally gravel	47589 47590	-	30.91	24.6	43.62	0.87	14.79	28.37	12.69	15.68	0.87	19.58	20.56	0.55	73	60	-	-	25.53	2E 24	24.81	28.46		-	_
2_	/ Without	Gi-di-	ıy.					4/590	_		_	_	_	-	_	_	_	-	-	_	-	-	-	_	-	20.03	33.34	24.01	20.40		-	
3_	ără cotă /	gr-al-	-ly			SAND with gra	ense (DR=78%), yellowish-brown silty avel. Extrapolated based on DPH tests, are follow-up of borehole	47597	-	11.26	11.64	49.93	27.17	10.85	-	_	_	-	_	-	-	_	-	-	-	_	=	-	-	-	_	-

intocmit/Made by: geol. Andrea Fangli
Format/Size: AA

Nr. pagin*/
P

coo	RD.	(STEF	REO	70, M	larea	Neagră)	FIŞA FORAJULU	JI NF	R. / B	ORE	EHOI	LE L	OG I	NO.:		FS05	+DF	РΗ			СО	D / C	ODE	Ξ : 3	140L0	GS/20	25					
X : 469	269.	75 Y	: 572	2930.	51 2	<u> </u>	CLIENT: S.C. GLODENI EN	ERGY	S.R.I	L.																						
		DATE	- 1			IALIZARE I DATE	PROIECT/PROJECT: Constr	uction	n of ar	n elec	tricity	storaç	ge fac	ility a	nd cor	nnecti	on to	CEF (Glode	ni 1, iı	n Glod	leni, I	Mures	Coun	ity					Co		8
21-	-Mar	-2025		2	:1-Ma	r-2025	AMPLASAMENT/ LOCATIO	N: Glo	odeni	munio	cipality	, CF	50604	1, 526	35, 52	2833,	Mure	ș cour	nty, Ro	omâni	а							G	<u>eo</u>	Sea	arc	n
Scara	/Sca	ile: 1:1	100						٦											saturată								n.			SPT	
Adâncime/Depth	Cotă/Elevation	Complex geotehnic	Geotechnical unit	Nivel apă/Groundwater level	SPT – N60		ere detaliată Jescription	Cod probă Sample code	euil Suma to	고 Argilă Clay	Si	Sa	Gr	w	wL	wP	Indice de plasticitate	Ic	Greutatea vol. naturală Sulk unit weight	Greutatea volumică în stare Saturated unit weight	е	و Gradul de saturație Degree of saturation	Umflarea liberă Free swelling	Modul edometric (200-300 kPa)	Presiunea de umflare Swelling pressure	φ	Coeziune efectivă Effective cohesion	Unghi de forf. int. ef. post-cedare Post-peak eff. angle of friction	Coeziune efectivă p	Modul de def. linear Soil modulus	φ-SPT	Grad de îndesare Relative density
								_	%	%	%	%	%	%	%	%	%	_	kN/m3	kN/m3	_	%	%	kPa	kPa	۰	kPa	۰	kPa	kPa	۰	%
0_	-					0.0 = 0.7m· T	OPSOIL: brown sandy clay with	1	1		1					1		_														
1_	/ Without elevation	ts				vegetal reami																										
-	ont	cl-al-	-ly					47591 47592		40.12	25.01	31.73	3.14	20.37	38.37	15.27	23.1	0.78	19.57	20.03	0.62	88	80	14286	0.4	-	-	_ _	-	-	_ _	
3_	ră cotă / With	gr-al-	-ly				ense (DR=85%), brown sandy GRAVEL. based on DPH tests, executed in the prehole	-																								

GeoSearch into

htccmit/Made by: geol. Andrea Fangli Format/Size: A4 Nr. pagină/Page no.: 1/1

СО	ORD.	(STE	REO	70, N	Marea	Neagră)	FIŞA FORAJULU	II NR	R. / B	ORE	HOL	E L	OG N	NO.:	ļ	FS06	+DP	Н			СО	D / C	ODE	E : 3	140L0	GS/20	25					
K : 46	9262	.8	Y : 57	2950.	22 2	Z :-	CLIENT: S.C. GLODENI ENE	RGY	S.R.L																							7
		CEPE		1		IALIZARE I DATE	PROIECT/PROJECT: Constr	uctior	of an	elect	ricity	storag	e faci	ility ar	nd cor	nectio	on to (CEF (Glodei	ni 1, ir	Gloc	leni, N	Mures	Coun	ity			G		Sea	J.r.c	®
2	1-Ma	r-2025	5	2	21-Ma	r-2025	AMPLASAMENT/ LOCATIO	N: Glo	odeni	munic	ipality	, CF :	50604	, 526	35, 52	2833,	Mureș	cour	ity, Ro	omâni	а							9	eu.	<u> </u>	אונ	11
Scar	a/Sca	ale: 1:	100						_								Í			rată											SPT	
Adâncime/Depth	Cotă/Elevation	Complex geotehnic	Geotechnical unit	Nivel apă/Groundwater level	SPT – N60		ere detaliată escription	Cod probă Sample code	Suma totală părți fine ≤0,063 mm Total of fine particles ≤0,063 mm	Argilă Clay	Praf Silt	Nisip Sand	Pietriș Gravel	Umiditate naturală Water content	Limita de curgere Liquid limit	Limita de plasticitate Plastic limit	Indice de plasticitate Plasticity index	Indice de consistență Consistency index	Greutatea vol. naturală Bulk unit weight	Greutatea volumică în stare saturată Saturated unit weight	Indicele porilor Void ratio	Gradul de saturație Degree of saturation	Umflarea liberă Free swelling	Modul edometric (200-300 kPa) Oed. modulus (200-300 kPa)	Presiunea de umflare Swelling pressure	Unghi de forf. int. efectiv Effective angle of friction	Coeziune efectivă Effective cohesion	Unghi de forf. int. ef. post-cedare Post-peak eff. angle of friction	Coeziune efectivă post-cedare Post-peak eff. cohesion	Modul de def. linear Soil modulus	internă ef riction - SPT	Grad de îndesare Relative density
Αď	S	Ö	Ģ	≥	SP			-	fine %	CI %	Si %	Sa %	Gr %	w %	wL %	wP %	lp %	lc –	γ kN/m3	γsat kN/m3	e -	Sr %	UL %	M2-3 kPa	pu kPa	φ	c kPa	фрс	cpc kPa	Es kPa	φ-SPT °	ID %
_						ı			,,,	70	70	70	70	,,,	70		70		in villo	IN WITHOUT		70	,,,	I III U	i ii u		ili u		III G	IN G		
1_	t elevation						rm, low plasticity, greyish- sandy CLAY, locally gravel																									
3	hou	cl-a	l-ly					47593	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29.55		28.96	8.16		-	
3	ră cotă / Without						ense (DR=72%), brown sandy GRAVEL. pased on DPH tests, executed in the	47594	_	30.94	24.0	44.96	0.1	17.56	31.7	12.53	19.17	0.74	19.06	19.99	0.63	75	65		_	_		-	-	-	=	
=	Fără	gr-a	ıl-ly			follow-up of bo																										

intocmit/Made by: geol. Andrea Fangli
Format/Size: ^^
Nr. pagin*"

	COOF	RD.	(STE	REO	70, M	area	Neagră)	FIŞA FORAJULU	II NF	R. / B	ORE	HOL	LE L	og i	NO.:	!	FS07	7+DF	Ή			СО	D / C	ODE	: 3	140L0	GS/20	25	1				
			47 Y			_		CLIENT: S.C. GLODENI ENE																									7
			EPEF				IALIZARE	PROIECT/PROJECT: Constr	uctior	n of ar	n elec	tricity	storaç	ge fac	ility a	ind co	nnecti	on to	CEF (Glode	ni 1, ir	Gloc	leni, N	/lures	Coun	ty							0
_			DATE	:			DATE									_													G	eo	Sea	arc	:h
			-2025		2	1-Ma	r-2025	AMPLASAMENT/ LOCATIO	N: Glo	odeni	munio	cipality	/, CF	50604	, 526	335, 5	2833,	Mures	ș cour	nty, Ro ⊺		a									\equiv	1.	_
	5	Cotă/Elevation	Complex geotehnic	Geotechnical unit 001	Nivel apă/Groundwater level	SPT – N60		ere detaliată lescription	Cod probă Sample code	Suma totală părți fine ≤0,063 mm a Total of fine particles ≤0,063 mm		Praf Silt	Nisip Sand	Pietriș Gravel	Umiditate naturală Water content	k Limita de curgere	Limita de plasticitate Plastic limit	Indice de plasticitate Plasticity index	Indice de consistență Consistency index	Greutatea vol. naturală Bulk unit weight	্ল Greutatea volumică în stare saturatë ই Saturated unit weight	Indicele porilor Void ratio	م Gradul de saturație Degree of saturation	Umflarea liberă Free swelling	Modul edometric (200-300 kPa) ⇔ Oed. modulus (200-300 kPa)	Presiunea de umflare Swelling pressure	Unghi de forf. int. efectiv Effective angle of friction	Coeziune efectivă Effective cohesion	Unghi de forf. int. ef. post-cedare Post-peak eff. angle of friction	Coeziune efectivă post-cedare Post-peak eff. cohesion	Modul de def. linear Soil modulus	onghi de forfecare internă ef SPT இEffective angle of friction - SPT	Grad de îndesare Relative density
	T	0		0		ഗ			_	%	%	%	%	%	%	%	%	%	_	kN/m3			%	%	kPa	kPa	•	kPa	•	kPa	kPa		%
	_						0.0 0.4mm T	OPSOIL: brown sandy clay with vegetal	1																								
		/ Without elevation	ts				reamins	rm, low plasticity, brown sandy																									
	- 1	ont							47595 47596	-	54.31	31.85	13.84	-	25.2	46.87	17.69	29.18	0.74	18.76	19.15 -	0.74	90	100	_ 15152	9.4		-	-	-	-	-	-
3	- 3	ră cotă	cl-al-	<i>-</i>				ense (DR=85%), brown sandy GRAVEL. based on DPH tests, executed in the prehole																									

intocmit/Made by: geol. Andrea Fangli
Format/Size· ^ 4
Nr. pagin***

CONTRACT nr. 22-SENG-37-SG/19.09.2022

BENEFICIAR

BENEFICIARY

CONTRACT no.

Fişa Forajului Borehole Log SUB1 Page 1/1

LUCRAREA Glodeni Solar Farm PROJECT

Glodeni village, Mures county

ADDRESS

ADRESA

DATA FINALIZĂRII FORAJULUI DATE OF BOREHOLE FINALIZATION 21.10.2022

REZULTATELE ANALIZELOR DE LABORATOR
LABORATORY TEST RESULTS

	Cot	a fata d	le:	-=	erane				Borcan Stut	gra		ozitie netric mm)		rmitate	Limi Atterl		ate		nta	are	R	g.			t t	Con	tractil	itatea				C	ompres	ibilita	tea						ezistenta forfecar		lete/ unar
Diomotes forei	Mar		.00 oraj	Grosimea stratult	Adancimea apei subt	Stratificatia	DENUMIREA STRATULUI	Numarul probelor	Adancimea	Argila	Nisip	Pietris	Blocuri	Coeficientul de neunifo	Limita de curgere	Limita de plasticitate	Indicele de plasticit	Umiditatea	Indicele de consiste	Gradul si/sau capacitatea de indes	Greutatea volumio	Greutatea volumio in stare uscata	_	Indicele porilor	Gradul de umidita	Indicele de activitate	Umflarea libera	Presiunea de umflare	Modulul de deformatie edometrica Modulul de	Modu deformatie	Modulul de deformatie edometrica	Modulul de deformatie edometrica	Modulul de deformatie edometrica	Tasare specifica la 200 kPa	Coef. compresibilitate volumica 200-300 kPa	Coeficientul de compresibilitate 200-300 kPa	Coeficient de consolidare 200-300 kPa	Tasarea specifica supl. prin umezire		Unghiul de frecare int.	Coeziunea kPa	Tipul determinarii	Test forfecare cu palete/ Penetrometru de buzunar
m	m rM	N	m	m	m				m	0.002	0.0063	63.00	200.00	Un= d60 d10		W _P %	I _P %	w %	I_c	$\frac{I_{D}}{C_{i}}$	_kN m³ γ	<u>kN</u> m³ γ _d	n %	e	Sr	I _A	U _L %	Pu kPa	Moed Moes 50-100 100-2/ MPa MP	Mood 200-300 MPa	Moed 300-500 MPa	Moed 500-800 MPa	Moed 800-1600 MPa	ε ₂₀₀ %	m _v MPa ¹	a _v MPa ¹	C _V m ² 8	i _{m300} %	Ed. I./ Ed. N/ Ed. I300	Φ	C kPa	UU/ CU/ CD	cure (kPa) / cu (kPa)
	1	Level v	s:									e size ution			Atterb lim											5	Shrink swelli	age ng				(Compre	ssibili	ty					She	ear stren	ngth	η, at
Borahola diamatar	+361.0 Blac Sea Leve	h	.00 ore- ole pit)	Stratum thickness	Underground water depth	Stratification	STRATUM DESCRIPTION	Number and type of samples	Depth	Clay	Sand	Gravel	Boulders	Non-uniformity coefficient	Liquid limit	Plastic limit	Plasticity index	Moisture content	Consistency index	Compaction degree Compaction capacity	Unit weight	Unit dry weight	Porosity	Void ratio	Degree of saturation	Activity index	Unconfined swelling	Swelling pressure	Dedometer deformation modulus Dedometer deformation	modulus Dedometer deformation modulus	Dedometer deformation modulus	Dedometer deformation modulus	Dedometer deformation modulus	Specific settlement at 200 kPa	Coefficient of volume compressibility 200-300 kPa	Coefficient of compressibility	Coefficient of consolidation	at 200-500 kPa Addit. spec. settl by wetting	Type of test	Angle of int. friction	Cohesion kPa	Type of test	Miniature Vane test/ Pocket penetrometer
1	. 2		3	4	5	6	7	8	9	10 1	1 12	13 14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31 32	33	34	35	36	37	38		40	41	42	43	44	45	46
	+358.4	67 -3	3.00	3.00		**************************************	Argilă prăfoasă, nisipoasă, cafenie/		1.00	28 3					53,3	19.8	33.5	21	1							1.2																	
Ø=127 mm					-6.00		Pietriş eu nisip, mediu, cenuşiu/ Grayish gravel with sand, medium	-	6.00		1 17	65						3.4																									
	+355		3.00	3.40	Ŧ		Argilā prāfoasā, cu oxizi de Fe și Mn, cenușie/ Greyish silty clay, with iron and manganese oxides	-	6.00	32 5	8 10				46.3	20.4	25.9	25	0.8							0.8																	

CONTRACT nr. 22-SENG-37-SG/19.09.2022

BENEFICIAR

BENEFICIARY

Fişa Forajului Borehole Log SUB2 Page 1/1

LUCRAREA Glodeni Solar Farm PROJECT

ADRESA ADDRESS Glodeni village, Mures county

REZULTATELE ANALIZELOR DE LABORATOR LABORATORY TEST RESULTS

DATA FINALIZĂRII FORAJULUI 21.10.2022

	CO	NTR	ACT	no.																														DATE	OF I	BOR	EHOL	E FIN	ALIZ	ATION				
	Cor	ta fata d	le:	-=	erane			□ B ⊠ S	tut	gra	ompo nulon d. in 1	netric	a	rmitate	Limi Atter		tate		anta	sare	8	8			e e	Cont	ractilit	atea					С	ompres	sibilita	itea						ezisten forfeca		lete/ unar
Diametru foraj	+361. Mai Nea		.00 oraj	Grosimea stratult	Adancimea apei subt	Stratificatia	DENUMIREA STRATULUI	Numarul probelor		Argila	Nisip		Blocuri	Coeficientul de neunific	Limita de curgere	Limita de plasticitate	Indicele de plastici	Umiditatea	Indicele de consiste	Gradul si/sau capacitatea de indes	Greutatea volumi	Greutatea volumic in stare uscata	Porozitatea	Indicele porilor	Gradul de umidita	Indicele de activitate	Umflarea libera	Presiunea de umflare	Modulul de deformatie edometrica	Tasare specifica la 200 kPa	Coef. compresibilitate	Volumica 200-300 kPa Coeficientul de compresibilitate	Coeficient de consolidare	Z001-500 KPa Tasarea specifica supl. prin umezire	Tipul determinarii	Unghiul de frecare int.	Coeziunea kPa	Tipul determinarii	Test forfecare cu palete/ Penetrometru de buzunar					
mn	rN	4N	m	m	m				m	0.002	0.0063	63.00	200.00	Un= d60 d10	W _L %	W _p	I _P %	w %	I _c	T _D -	kN m³ γ	kN m³ γ _d	n %	e	Sr	I _A	U _L %	Pu kPa	Moed 50-100 1 MPa	Moed 00-200 MPa	Mood 200-300 MPa	Moed 300-500 MPa	Moed 500-800 MPa	Moed 800-1600 MPa	ε ₂₀₀ %	m,		C _V	i _{mass} %	Ed. I./ Ed. N/ Ed. I300	Φ	C kPa	UU/ CU/ CD	cure (kPa) / cure (kPa)
		Level v	/s:					□ Ja ⊠ T			article istribu				Atterb lim												hrinka swellin						(Compre	ssibil	ity					She	ear stre	ngth	, rs
Borehole diameter	+361. Blac Ser Lev	a h	.00 ore- iole pit)	Stratum thickness	Underground water depth	Stratification	STRATUM DESCRIPTION	Number and type of samples		Clay	Sand	Gravel	Boulders	Non-uniformity coefficient	Liquid limit	Plastic limit	Plasticity index	Moisture content	Consistency index	Compaction degree Compaction capacity	Unit weight	Unit dry weight	Porosity	Void ratio	Degree of saturation	Activity index	Unconfined swelling	Swelling pressure	Oedometer deformation modulus	Specific settlement at 200 kPa	Coefficient of volume compressibility	200-300 kPa Coefficient of	Coefficient of consolidation	at 200-300 kPa Addit. spec. settl by wetting	Type of test	Angle of int. friction	Cohesion kPa	Type of test	Miniature Vane test/ Pocket penetrometer					
1	2		3	4	5	6	7	8	9	10 1	1 12	13 14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
						//// //// //// ////	Argila prafoasă, cafenie, nisipoasă, cu		1.00	20 2	5 54	1						16.4 15.9 14			17.4	14.9	42.9	0.8	0.6				4.5	6.9	10.0	12.5			4.8	0.10	00 0.17	5		EDn	23	18	CUn	
	±350	78		2.20		1111	stone	2 🗵	2.00	27 2	8 42	3						18.4 18.5 18.3			19.5	16.5	37.1	0.6	0.8				7.1	7.6	9.6	12.7			4.2	0.10	0.16	6		EDn	24	38	CUn	
Ø=127 mm	+359.	.48 -2		4.80			Praf argilos, cafeniu/ Brownish clayey silt Prietriş cu nisip, cafeniu, in masă prăfoasă/ Brownish gravel with sand, in silty mass Argilă prăfoasă, usor nisipoasă, cenușie/ Greyish sandy silty clay, with sand	3	5.00		4 21				39.9	17.5	22.4	4.9	0.8							0.7																		

CONTRACT nr. 22-SENG-37-SG/19.09.2022

BENEFICIAR

BENEFICIARY

CONTRACT no.

Fişa Forajului Borehole Log SUB3

LUCRAREA Glodeni Solar Farm PROJECT

ADRESA

Glodeni village, Mures county

ADDRESS DATA FINALIZĂRII FORAJULUI DATE OF BOREHOLE FINALIZATION

21.10.2022

REZULTATELE ANALIZELOR DE LABORATOR LABORATORY TEST RESULTS

			MCI																																	DATE	OFE	BORE	HOLI	A FINA	ALIZA	TION				
		ota fat			terane				1	× :		gra	Compo anulon (d. in r	netric			Limi Atterl		itate		centa	sare	ica	ica			ate	Co	ntracti	litatea	ı				С	ompres	sibilita	itea						tezisten forfeca		alete/ zunar
g rate	+361 Ma Nea	area	0.00 Foraj	Grosimea stratul	Adancimea apei sub	Stratificatia		DENUMIREA STRATUL	UI	Numarul probelor	Adancimea Adancimea		Praf Nisip	Pietris Bolovanis	ĬĬ	Coeficientul de neunif	Limita de curgere	Limita de plasticitate	Indicele de plastic	Umiditatea	Indicele de consist	Gradul si/sau capacitatea de inde	Greutatea volum	Greutatea volum in stare uscata		Indicele porilor	Gradul de umidit	Indicele de activitate	Umflarea	Presiunea		deformatie edometrica Modulul de	defor	defor	Modulul de deformatie edometrica	Modulul de deformatie edometrica	Tasare specifica la 200 kPa	Coef. compresibilitate volumica 200-300 kPa	Coeficientul de compresibilitate	200-300 kPa Coeficient de consolidare 200-300 kPa	Tasarea specifica supl. prin umezire		Unghiul de frecare int.	Coeziunea kPa	Tipul determinarii	Test forfecare cu palete/ Penetrometru de buzunar
m	n rl	MN	m	m	m						m	0.002	0.0063	63.00	630.00	Un= 160 110	W _L	W _p	I _P %	w %	I_c	$\frac{I_{\mathrm{D}}}{C_{\mathrm{i}}}$	$\frac{-kN}{m^3}$	kN m³ γ _d	n %	e	Sr	I _A	U _L	Pu kP	1 50- a M	ed Moed 100 100-20 Pa MP	Moed 200-30 MPa	Moed 300-500 MPa	Moed 500-800 MPa	Moed 800-1600 MPa	ε ₂₀₀ %	m _v MPa ¹	a _v		i _{m,00}	Ed. I./ Ed. N/ Ed. I300	Ф	C kPa	UU/ CU/ CD	cu (kPa) / cu (kPa)
		Leve	l vs:							□ : ⊠	Jar Tube		Particle distribu				Atterb lim												Shrin swel						(Compre	essibili	ity					Sh	near stre	ength	it/ er
Borehola diomater	Bla So Le	ack ea	0.00 Bore- hole (pit)	Stratum thickness	Underground water	depth		STRATUM DESCRIPTIO		of samples	Depth	Clay	Sand	Gravel		Non-uniformity coefficient	Liquid limit	Plastic limit	Plasticity index	Moisture content	Consistency index	Compaction degree Compaction capacity	Unit weight	Unit dry weight	Porosity	Void ratio	Degree of saturation	Activity index	Unconfined swelling	Swelling pressure	Oedometer deformation	modulus Oedometer deformation	Oedometer deformation modulus	Oedometer deformation modulus	Oedometer deformation modulus	Oedometer deformation modulus	Specific settlement at 200 kPa	Coefficient of volume compressibility	Coefficient of compressibility	Coefficient of consolidation	at 200-300 kPa Addit. spec. settl by wetting	Type of test	Angle of int.	Cohesion kPa	Type of test	Miniature Vane tes Pocket penetromet
1	- 2	2	3	4	5	6		7		8	9	10 1	11 12	13 14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	- 3	1 32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
	+361	1.25	-0.40	0.40	1	777	2	Sol vegetal/ Top soil			Ė									22.4 21.2 21			19.3	15.8	39.7	0.7	0.9				3	.3 7.4	13.2	20.0			4.1	0.076	0.125	j		EDn	22	64	CUn	
	+359	9.15	-2.50	2.10			$\stackrel{\text{\tiny }}{=}$	Argila prafoasă, cafenie, nisipo Brownish silty sandy clay, with	asă/	1	2.00		34 39	1				17.2		16.7	0.9							1.1												_						
Ø=127 mm	+353		-8.00				ZZZ.	etriș cu nisip, cafeniu, în masă p frownish gravel with sand, in silt	ăfoasă/ y mass		6,00		21 30							4.7																										

INTOCMITOR STUDIU GEOTEHNIC SAIDEL Engineering SA GEOTECHNICAL REPORT ISSUER

Fişa Forajului Borehole Log SUB4

Page 1/1

LUCRAREA Glodeni Solar Farm PROJECT

Glodeni village, Mures county

ADRESA ADDRESS

DATA FINALIZĂRII FORAJULUI DATE OF BOREHOLE FINALIZATION 22.10.2022

BENEFICIAR BENEFICIAR	-	GLOD	ENI EN	ERGY SRL					REZ		TELE			0		Page E LA	1/1 BORATOR
CONTRACT		22-SE	NG-37-S	SG/19.09.2022						LA	ABOR	ATO	ORY	TES	T RE	ESUL	TS
Cota fata de:	in in	terane			Borcan Stut	Compozitie granulometrica (d. in mm)	ormitate	Limitele Atterberg	itate	enta	sare	ica	ica			ate	Contractilitatea

Fig.		Co	ta fata d	le:	·=	erane			\boxtimes		grar	nulome d. in m	etrica	ormitate	Limi Atter		tate	f	81	sare	e Ca	g			tte	Cont	tractilit	atea					C	ompresi	bilitat	tea						Reziste forfe			umar mar
Care	Diametru foraj	Mar	rea Eo		Grosimea stratuli	Adancimea apei subt	Stratificatia	DENUMIREA STRATULUI	amarul probelor	ancimea	Argila	Nisip Pietris	Bolovanis	e j		de pla	Indicele de plastici	Umiditatea Indicale de consiste	Indicele de consiste Gradul si/sau	capa	Greut	Greut	Porozitatea	Indicele porilor	Gradul de umidit	Indicele de activitate	Umflarea libera	Presiunea de umflare	Modulul de deformatie edometrica	Tasare specifica la 200 kPa	Coef. compresibilitate volumica 200-300 kPa	Coeficientul de compresibilitate	Coeficient de consolidare	Tasarea specifica			frecare int. Coeziunea	Tipul	e e	l est tortecare cu pa Penetrometru de buz					
Control Cont	mm	rN	ÍN	m	m	m				m	0:00	0.0063	63.00	000 Un= 000 d60 d10	- W _L	W _p %			$\frac{1}{C}$	T _D -	kN m³ γ	kN m³ γ _d	n %	e	Sr	I _A	U _L	Pu kPa	Moed 50-100 MPa	Moed 100-200 MPa	Mood 200-300 MPa	Moed 300-500 MPa	Moed 500-800 MPa	Moed 800-1600 MPa					i _{m36} %	Ed. I. Ed. N Ed. I3	/ I/ (300	D C	UU CU * CD	J/ Cun cun cun	(kPa) / ** (kPa)
STRATUM DESCRIPTION Superior Stratum S			Level v	rs:											Atterb	erg's										S	Shrinkaş swellin	ge ig					C	ompres	sibilit	ty						Shear st	rength		, L
+361.33 -3.40 -3	Borehole diameter	Blac Sea	ek Bo	ore- ole	atom	Underground water depth	Stratification	STRATUM DESCRIPTION	umber and type of samples		Clay	Sand	Cobbles	Boulders Non-uniformity	Liquid limit	Plastic limit	Plasticity index	Moisture content	5, 5	Compaction capacity	Unit weight	Unit dry weight	Porosity	Void ratio	Degree of saturation	Activity index	Unconfined swelling	Swelling pressure	Dedometer deformation modulus	Specific settlement at 200 kPa	Coefficient of volume compressibility	Coefficient of	Coefficient of consolidation	at 200-300 kPa Addit. spec. settl	Type of test	Angla of int	friction	KPa Type of test		Miniature Vane tes Pocket penetromete					
Argila prafosasi, cafenie, nisiposasi/ Brownish silty sandy clay, with stone 1 100 20 39 35 6 304 155 24 153 1	1	2		3	4	1 2			8	9	10 11	12 13	3 14	15 16	17	18	19	20 2	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42		43 44	45	;	46
Pietriş cu nisip, cafeniu, în masă prăfoasă/ Brownish gravel with sand, in silty mass Argilă prăfoasă, usor nisipoasă, cenuşie/		+361.	.330	0.40	0.40		//// ///// ////						5	_	39.4	15.5			1		17.8	15.3	41.7	0.7	0.6	1.2			5.1	6.9	13.2	26.4			4.2	0.076	5 0.130)	+	EDn			+		
Greyish sandy silty clay	Ø = 127 mm			***************************************	- -			Pietriș cu nisip, cafeniu, în masă prăfoasă/ Brownish gravel with sand, in silty mass	- Innerhanden				7																																

CONTRACT nr. 22-SENG-37-SG/19.09.2022

BENEFICIAR

BENEFICIARY

CONTRACT no.

Fişa Forajului Borehole Log SUB5

LUCRAREA Glodeni Solar Farm PROJECT

Glodeni village, Mures county ADRESA

ADDRESS

DATA FINALIZĂRII FORAJULUI 21.10.2022 DATE OF BOREHOLE FINALIZATION

REZULTATELE ANALIZELOR DE LABORATOR LABORATORY TEST RESULTS

								_	_	-	ompo	zitio		1		Т	T					T	T		T								DATE										
		a fata	de:		terane			\boxtimes		gra	nulon d. in n	etrica	ormitate		nitele erberg	itate		centa	sare	ica	ica			ate	Con	ntracti	litatea					C	ompres	ibilitat	tea						forfec		alete/ zunar
Diametru fora	+362.0 Mare Neag	ea E	0.00 Foraj	Grosimea stratul	Adancimea apei sub	Stratificatia	DENUMIREA STRATULUI	Numarul probelor	Adancimea	Argila	Nisip	Bolovanis	Blocuri Coeficientul de neunif	Limita de curgere	Limita de plasticitate	Indicele de plastic	Umiditatea	Indicele de consist	Gradul si/sau capacitatea de inde	Greutatea volum	Greutatea volum		Indicele porilor	Gradul de umidit	Indicele de activitate	Umflarea	Presiunea de umflare		defor	defor	Modulul de deformatie edometrica	Modulul de deformatie edometrica	Modulul de deformatie edometrica	Tasare specifica la 200 kPa	Coef. compresibilitate volumica 200-300 kPa	Coeficientul de compresibilitate 200-300 kPa	Coeficient de consolidare 200-300 kPa	Tasarea specifica supl. prin umezire		Unghiul de frecare int.		Tipul determinarii	Test forfecare cu palete/ Penetrometru de buzunar
mm	ı rM	N	m	m	m				m	0.002	0.0063	63.00	00000 Un= 00000 d600 0100	W _L	W _p %	I _P %	w %	Ic	I _D	_kN m³ γ	kN m³ γ _d	n %	e	Sr	I _A	U _L	Pu kPa	Мос 50-14 МР	d Moed 00 100-20 a MPa	0 Moed 200-300 MPa	Moed 300-500 MPa	Moed 500-800 MPa	Moed 800-1600 MPa	ε ₂₀₀ %	m _v MPa ¹	a _v	C _V m ² 8	i _{m300} %	Ed. I./ Ed. N/ Ed. I300	Φ	C kPa	UU/ CU/ CD	cure (kPa) / cure (kPa)
)	Level	vs:								article istribu				rberg's mits											Shrin swel	kage ling					C	Compre	ssibilit	ty					Sh	ear str	ength	er er
Borehole diameter	+362.0 Blac Sea Leve	k E	0.00 Bore- hole (pit)	Stratum thickness	Underground water	Stratification	STRATUM DESCRIPTION	Number and type of samples	Core	Clay	Sand	Cobbles	Boulders Non-uniformity coefficient	Liquid limit	Plastic limit	Plasticity index	Moisture content	Consistency index	Compaction degree Compaction capacity	Unit weight	Unit dry weight	Porosity	Void ratio	Degree of saturation	Activity index	Unconfined swelling	Swelling pressure	Oedometer deformation	modulus Oedometer deformation	Oedometer deformation modulus	Oedometer deformation modulus	Oedometer deformation modulus	Oedometer deformation modulus	Specific settlement at 200 kPa	Coefficient of volume compressibility 200-300 kPa	Coefficient of compressibility	Coefficient of consolidation at 200-300 kPa	Addit. spec. settl by wetting	Type of test	Angle of int.	Cohesion	Type of test	Miniature Vane tee Pocket penetromet
1	2		3	4	5	6	7	8	9	10 1	1 12	13 14	15 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
	+358.0	00 -	-3.00	3.00	_		Argilā prafoasā, nisipoasā cafenie, nisipoasā/ Brownish silty sandy clay	2 🔀	2.00		8 64	2			17.5		17.2 16.6 16.1			19.3	16.5	37.2	0.6	0.8	1.2			8.0) 10.:	5 12.5	15.1			2.7	0.080	0.127			EDn	29	19	CUn	
Ø=127 mm	+357.0		-5.00	1.00	-5.70		Pietriş cu nisip cafeniu/ Gravel with brownish sand Nisip mediu, cafeniu cu pietriş şi bolovânis/ Brownish medium sand with gravel and coddle	4 -	5.00	7	6 21	56					6.2																										

CONTRACT nr. 22-SENG-37-SG/19.09.2022

BENEFICIAR

BENEFICIARY

Fişa Forajului Borehole Log SUB6

LUCRAREA Glodeni Solar Farm PROJECT

Glodeni village, Mures county

ADRESA

ADDRESS

DATA FINALIZĂRII FORAJULUI DATE OF BOREHOLE FINALIZATION 22.10.2022

REZULTATELE ANALIZELOR DE LABORATOR
LABORATORY TEST RESULTS

	CON				22-8	SENG-3	57 - SG	G/19.09.2022												L	ABO	ΧΑΙ	OK 1	IES	51 K	ESU.	L13												I FOR LE FI			ION	22.1	10.2022	2	
	Cota	fata d	e:	-=	erane				\bowtie		g	Compranulo (d. ir	metri		rmitate		nitele erberg	ate		nta	are	R	g			te	Co	ntracti	itatea					C	ompre	sibilit	atea							ezistent forfeca		iete/ unar
ımetru f	+361.7 Mare: Neagr	a _	00 raj	Grosimea stratulu	Adancimea apei subt	Stratificatia		DENUMIREA STRATULUI	Numarul probelor	V Adancimea Adancimea	Argila	Praf	s	Blocuri	Coeficientul de neunifo	Limita de curgere	Limita de plasticitate	Indicele de plasticit	Umiditatea	Indicele de consiste	Gradul si/sau capacitatea de indes	Greutatea volumic	Greutatea volumic in stare uscata		Indicele porilor	Gradul de umidita	Indicele de	Umflarea	Presiunea de umflare	-	defor	Modulul de deformatie edometrica	Modulul de deformatie edometrica	Modulul de deformatie edometrica	Modulul de deformatie edometrica	Tasare specifica	Coef. compresibilitate	volumica 200-300 kPa Coeficientul de	compresibilitate 200-300 kPa Coeficient de consolidare	Z00-300 kPa	Tasarea specifica supl. prin umezire	Tipul determinarii	Unghiul de frecare int.	Coeziunea kPa	Tipul determinarii	Test forfecare cu palete/ Penetrometru de buzunar
mm	rΜî	7	m	m	m					m	0000	0.0063	5.00	200.00	Un= d60 d10	W _L	W _p	I _P %	w %	I _c	I _D	_kN m³ γ	kN m³ Y _d	n %	e	Sr	I _A	U _L	Pu kPa	Moes 50-10 MPs	Moed 100-200 MPa	Moed 200-300 MPa	Moed 300-500 MPa	Moed 500-800 MPa	Moed 800-160 MPa	ε ₂₀₀ %	m,		MPa ¹ n		i _{m300}	Ed. I./ Ed. N/ Ed. I300	Φ	C kPa	UU/ CU/ CD	cu (kPa)
	L	evel v	s:							Jar Tube		Partio distri					rberg's nits											Shrink swell	age		•				Compre	essibi	lity		'				She	ear stre	ngth	,
Borehole diameter	+361.7 Black Sea Leve	: Bo	00 ore- ole oit)	Stratum thickness	Underground water	depth		STRATUM DESCRIPTION	Number and type of samples	Core	Clay	Silt	Gravel	Boulders	Non-uniformity coefficient	Liquid limit	Plastic limit	Plasticity index	Moisture content	Consistency index	Compaction degree Compaction capacity	Unit weight	Unit dry weight	Porosity	Void ratio	Degree of saturation	Activity index	Unconfined swelling	Swelling pressure	Dedometer deformation	Dedometer deformation modulus	Dedometer deformation modulus	Dedometer deformation modulus	Dedometer deformation modulus	Dedometer deformation modulus	Specific settlement	Coefficient of volume compressibility	200-300 kPa Coefficient of	compressibility Coefficient of	at 200-300 kPa	Addit. spec. settl by wetting	Type of test	Angle of int. friction	Cohesion kPa	Type of test	Miniature Vane test Pocket penetromete
1	2 +361.5		3	4 0,20	5	6		7 Sol vegetal/ Topsoil	8	9	10	11 12	13 1	4 15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	3 3	39 4	10	41	42	43	44	45	46
		2 -0	1	- U.2U			Z Pi	Praf nisipos argilos, cafeniu la nisip prăfo Brownish sandy clayey silt to silty sand	š/	1.00		32 43				22.0	22.0	10	15 17 16.9			20.1	17.4	33.4	1 0.5	5 0.8		7		6.9	15.3	17.6	22.4			2.4	0.0	57 0.	.085	+		EDn	31	28	CUn	
mm	+359.6		.40	2.10				Praf argilos nisipos, cafeniu cu oxizi de Mn/ Brownish sandy clayey silt, with manganese oxides		3.00		27 49						25	16.3								1.	2												7	\exists					
0=1271	+355.3		.40	- 3.00	-5.70			Nisip prāfos mediu, cafeniu, cu pietriş şi bolovāniş	4 🗀	5.00	10	8 38	44						8.2																					_						
	+353.7		.00	1.60			2	Praf nisipos argilos, cenuşiu/ Greyish sandy clayey silt	5	8.00	18	30 36	16			43.6	17.4	26.2	16.2	1							1.	5																		

CONTRACT nr. 22-SENG-37-SG/19.09.2022

BENEFICIAR

BENEFICIARY

CONTRACT no.

Fişa Forajului Borehole Log SUB7

PROJECT

LUCRAREA Glodeni Solar Farm

ADDRESS

ADRESA

Glodeni village, Mures county

REZULTATELE ANALIZELOR DE LABORATOR LABORATORY TEST RESULTS

DATA FINALIZĂRII FORAJULUI DATE OF BOREHOLE FINALIZATION 21.10.2022

		11421	CI II																															DAI	E OF	BO	REHU)LE F	FINAL	IZAI	ION					
		fata de		· 1	terane			\boxtimes		gra	Compo inulon d. in n	netrica		ormitate	Limit Atterb		itate		tenta	esare	ica	ica		÷	iate	Con	ractilit	atea					C	compre	esibili	itatea							ezistent forfeca		alete/	Zunes
Diametru fora	+361.9 Mare: Neagr	a E	raj	Grosimea stratu	Adancimea apei sub	Stratificatia	DENUMIREA STRATULUI	Numarul probelor	Adancimea Adancimea	Argila	Nisip	Pietris Bolovanis	Blocuri	Coeficientul de neunil	Limita de curgere	Limita de plasticitate	Indicele de plastic	Umiditatea	Indicele de consis	Gradul si/sau capacitatea de ind	Greutatea volum	Greutatea volum in stare uscata	Porozitatea	Indicele porilo	Gradul de umidi	Indicele de activitate	Umflarea libera					Modulul de deformatie edometrica	Modulul de deformatie edometrica	Modulul de deformatie edometrica	Tasare specifica	la 200 kPa	volumica 200-300 kPa Coeficientul de	compresibilitate 200-300 kPa	Coeficient de consolidar 200-300 kPa	Tasarea specifica supl. prin umezire	Tipul determinarii	Unghiul de frecare int.	Coeziunea kPa	Tipul determinarii	Test forfecare cu p	- Click City
mn	rMî	N r	n	m	m				m	0.002	0.0063	63.00	200.00	Un= d60 d10		W _p %		w %	I _c	I _D	_kN m³ γ	<u>kN</u> m³ γ _d	n %	e	Sr	I _A	U _L %		Moed 50-100 MPa	Moed 00-200 MPa	Moed 200-300 MPa	Mood 300-500 MPa	Moed 500-800 MPa	Moec 800-16 MPs	d ε ₂ 500 %	200 : 6 ;			C _v m ² 8	1 m ₃₀₀	Ed. I./ Ed. N/ Ed. I300	Φ	C kPa	CU/ CD	cume (k cu (k	²a) / ∂a)
	L	evel vs	s:								article istribu				Atterbe limi												hrinka; swellin							Compi	ressib	ility						Sh	ear strei	ngth	ı,	ia
Borehole diameter	+361.9 Black Sea Leve	ho	re- ole	Stratum thickness	Underground water depth	Stratification	STRATUM DESCRIPTION	Number and type of samples	Depth	Clay	Sand	Gravel	Boulders	Non-uniformity coefficient	Liquid limit	Plastic limit	Plasticity index	Moisture content	Consistency index	Compaction degree Compaction capacity	Unit weight	Unit dry weight	Porosity	Void ratio	Degree of saturation	Activity index	Unconfined swelling	Swelling pressure	Oedometer deformation modulus	Oedometer deformation modulus	Oedometer deformation modulus	Oedometer deformation modulus	Oedometer deformation modulus	Oedometer deformation	modulus Specific settlement	at 200 kPa Coefficient of	volume compressibility 200-300 kPa	Coefficient of	Coefficient of consolidation at 200-300 kPa	Addit. spec. settl by wetting	Type of test	Angle of int. friction	Cohesion kPa	Type of test	Miniature Vane tes	Роскет репеции
1	2	3	3	4	5	6	7	8	9	10 1	1 12	13 14	, 15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	3	7	38	39	40	41	42	43	44	45	46	
Ø=127 mm	+359.9	3 -0.	.00	1.60		12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	Argilā prāfoasā, nisipoasā, cafenic cu intercalaţii cenuşii/ Brownish sandy silty clay with greyish intercalations Nisip prăfos cafeniu/ Brownish silty sand	į	2.00		5 66				35	15.7		15.4 14.4 4.7 4.3	1		18.5	16.2	38.3	0.6	0.6	0.9			6.5	8.6	14.9	21.3			3.	.1 0	.067 0	0.109		<u> </u>	EDn	31	17	CUn		
	+355.9		+++++++++++++++++++++++++++++++++++++++	3.20	5.70		Argilā prāfoasā slab nisipoasā cenuṣie/Greyish sandy silty clay	5 -	6.00	8 1 31 5	. 12 0 21 i6 13	60			46.6	20.1	26.5	7 26.8	0.7							0.9														<u> </u>						_

CONTENT:

• Dynamic heavy penetration tests (DPH)

CC	ORD.	(STER	EO	70, N	larea Neagră)	FIŞA PDG	3 / I	DPH LO	OG: F	S04+[OPH						
DA'	TART	.65 Y: CEPER DATE		F	94 Z:- TA FINALIZARE INISH DATE 21-Mar-2025	CLIENT: S.C. PROIECT/PR connection to AMPL./LOC.:	OJE	ECT: Con	structio	n of an e					Geo	Sear	ch
		ale: 1:5	0			7				, 0. 000	,, 020	30, 0200		,	urală	efectiv	ar
Adâncime/Depth	Cotă/Elevation	Complex geotehnic	Geotechnical unit	Nivel apă Groundwater level	Descriere detal	iată	N	umär băt	ăi pe 10	cm/			N60 corectat N60 corrected	Grad de îndesare Relative density	Greutatea vol. naturală Bulk unit weight	Unghi de forf. int. efectiv Effective angle of friction	Modul de def. linear Soil modulus
Adi	Ö	ပိ	Ğ	S S	Layer description	on		umber of	•		cm		N60cor	ID %	γ kN/m3	φ .	Es kPa
0					0.0 – 0.8m: TOPSOI	I · firm brown candy	Ιο	10	20	30	40	50	1				
1_	á cotă / Without elevation	ts cl-al-	M		o.8 – 2.4m: stiff, low greyish-reddish-brow locally gravel intercal	plasticity, n sandy CLAY,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
3	Fără	gr-al-			2.4 – 3.8m: dense (I brown silty SAND wit		0 0 0 0 0 0 0	111	17 17 21	25] 27 [25] 26 24			37.98	78	21.01	40	28385

СО	ORD.	. (STERE	7 0,	Ma	area Neagră)	FIŞA PDG	DPH LOG: F	S05+D	PH					
X : 46	9269	.75 Y : 5	7293	0.5	51 Z :-	CLIENT: S.C.	LODENI ENERGY	S.R.L.						
DA	TA ÎN	CEPERE	DA	\T/	A FINALIZARE		IECT: Construction							
S	TART	DATE		FII	NISH DATE	connection to	EF Glodeni 1, in Gl	odeni, M	ures County		(Gen	ear	ch
2	21-Ma	r-2025		2	1-Mar-2025	AMPL./LOC.:	EF Glodeni 1, in Gl	CF 506	04, 52635, 5283	3, Mureș	county	JEU <u>-</u>	<u> </u>	CII
Scar	ra/Sca	ale: 1:50										ural	efect	<u> </u>
Adâncime/Depth	Cotă/Elevation	Complex geotehnic Geotechnical unit	Nivel apă	undwater level	Descriere detal	iată	Număr bătăi pe 10	cm/		N60 corectat N60 corrected	Grad de îndesare Relative density	Greutatea vol. naturală Bulk unit weight	Unghi de forf. int. efectiv Effective angle of friction	Modul de def. linear Soil modulus
Adő	S	ပြီ ဗြိ	l≧d	5	Layer description	on	Number of blows e		m	N60cor	ID %	γ kN/m3	φ	Es kPa
0							10 20	.30	40 50		,,,	ICI VIIIIO		N U
-	levation	ts			0.0 – 0.7m: TOPSOI with vegetal reamins	L: brown sandy clay			1 1					
1_	Fără cotă / Without elevation	cl-al-ly			0.7 – 2.3m: stiff, mec greyish-brown sandy gravel intercalations									
3		gr-al-ly			2.3 – 3.5m: dense (D sandy GRAVEL	R=85%), brown	20	30 29 27 30	4 54	43.4	85	21.62	41	44460

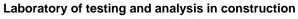
GeoSearch 1

Intocmit/Made by: geol. Andrea Fangli Format/Size: A4 Nr. pagină/Page no.: 1/1

СО	ORD.	. (STEF	REO	70, N	larea Neagră)	FIŞA PDO	3 / E	OPH LO	OG: F	S06+[OPH						
S	ΓΑ ÎN TART	.8 Y CEPER DATE r-2025	RE	DAT F	Z2 Z: — A FINALIZARE INISH DATE 11-Mar-2025	CLIENT: S.C. PROIECT/PR connection to AMPL./LOC.:	OJE	CT: Con	struction	of an e					Geo	Sear	ch
		ale: 1:5		Nivel apă Groundwater level				umär băt			0-, 0-00	5, 0200	N60 corectat	Grad de îndesare Relative density	Greutatea vol. naturală Bulk unit weight	Unghi de forf. int. efectiv Effective angle of friction	Modul de def. linea Soil modulus
Ad	ပိ	ပိ	ő	ĘĎ	Layer description	on	Νι	umber of	blows e	ach 10 d	cm		N60cor -	ID %	γ kN/m3	φ	Es kPa
1	Fără cotă / Without elevation	cl-al-	lly		0.0 – 3.0m: firm, low greyish-reddish-brow locally gravel intercal	n sandy CLAY,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10	20 	30	40	50					
3 _		gr-al-	·ly		3.0 – 3.9m: dense (E sandy GRAVEL	DR=72%), brown	0		20 16 18 21 22		45	52	33.33	72	20.53	38	35392

СО	ORD.	(STE	REO	70, N	larea Neagră)	FIŞA PDG	3 / D	PH LO	G: F	S07+D	PH						
S	TA ÎN	.47 Y CEPEI DATE r-2025	RE E	F	A FINALIZARE	CLIENT: S.C. PROIECT/PRiconnection to AMPL./LOC.:	OJE	CT: Cons	truction	of an ele					Geo	ear	ch
		r-2025 ale: 1:		-	21-Mar-2025	AMPL./LOC.:	Gloo	ieni muni	cipality,	CF 5060	J4, 5263	5, 5283	3, Mureș	county	<u>a</u>	ectiv ction	
Adâncime/Depth	Cotă/Elevation	Complex geotehnic	Geotechnical unit	Nivel apă Groundwater level	Descriere detal			măr bătă					N60 corectat N60 corrected	Grad de îndesare Relative density	Greutatea vol. naturală Bulk unit weight	Unghi de forf. int. efectiv Effective angle of friction	Modul de def. linear Soil modulus
Ad	S	Ö	Ğ	Ş Ş	Layer description		1	mber of b			m		N60cor	ID %	γ kN/m3	φ	Es kPa
0	,							,10	20	30	40	50	•	•			
1	Fără cotă / Without elevation	cl-al			0.0 – 0.4m: TOPSOII with vegetal reamins 0.4 – 3.2m: firm, low brown sandy CLAY		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
-		gr-al	-ly		3.2 – 3.9m: dense (D sandy GRAVEL	R=85%), brown	0 0		 	33		50	58.9	85	21.92	41	58410

CONTENT:


• Laboratory test reports

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county Date of description 5-Feb-2024

Superior depth of sample (m) 2.00 Borehole No. FS01 Sample No. 42672 Inferior depth of sample (m) 2.40

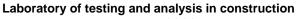
	DESCRIPTION OF SOIL	PROPERTIES
Type of soil		coarse soil
	Primary fraction	SAND
Particle size	Secondary fraction I.	clay
distribution	Secondary fraction II.	silt
	Tertiary fraction	-
Particle shape	Form	-
(in case of gravel,	Angularity/roundness	-
cobble and boulders)	Surface texture	-
Colour of comple	Hue	brown
Colour of sample	Chroma	yellowish
Consistency of fin	e fraction	soft
Carbonate conten	t	non-calcareous
Organic content		inorganic
Macroscopic obse	rvations	soft/firm

IDENTIFICATION OF FINE FRACTION		
Dilatancy	medium	
Toughness	low	
Plasticity	low	
Dry strength	low	
Feel	granular	
Behaviour in water	fast disintegration	
Behaviour in air	fast drying	
Cohesion	plastic deformation	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES

Fig. 1 Fig. 2

Laboratory personel responsible for description: Fodor-Ianosi Evelin


> Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county Date of description 5-Feb-2024

Superior depth of sample (m) 2.40 Borehole No. FS01 Sample No. 42673 Inferior depth of sample (m) 2.85

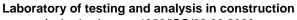
DESCRIPTION OF SOIL PROPERTIES		
Type of soil		coarse soil
	Primary fraction	SAND
Particle size	Secondary fraction I.	silt
distribution	Secondary fraction II.	clay
	Tertiary fraction	-
Particle shape	Form	-
(in case of gravel,	Angularity/roundness	-
cobble and boulders)	Surface texture	-
Colour of sample	Hue	brown
Colour of sample	Chroma	yellowish
Consistency of fine	e fraction	firm
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION			
Dilatancy	rapid		
Toughness	low		
Plasticity	neplastic		
Dry strength	low		
Feel	granular		
Behaviour in water	fast disintegration		
Behaviour in air	fast drying		
Cohesion	crumbles		
DESCRIPTION OF BEDDING AND DISCONTINUITY			
Bedding	no bedding		
Discontinuity	without discontinuities		

SAMPLE PICTURES

Fig. 1 Fig. 2

Laboratory personel responsible for description: Fodor-Ianosi Evelin


> Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory

eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test. Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

Carbonate content

Macroscopic observations

Organic content

Authorization no. 4056/ISC/22.06.2023

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS

Location Glodeni municipality, CF 50604, 52635, 52833, Mures county Date of description 5-Feb-2024

Borehole No. FS01 Superior depth of sample (m) 3.60
Inferior depth of sample (m) 4.00

DESCRIPTION OF SOIL PROPERTIES Type of soil fine soil Primary fraction CLAY Secondary fraction I. sand Particle size distribution Secondary fraction II. gravel Tertiary fraction cubic Particle shape Angularity/roundness subangular (in case of gravel, cobble and boulders) Surface texture rough Hue brown Colour of sample yellowish Chroma Consistency of fine fraction firm

IDENTIFICATION OF FINE FRACTION		
Dilatancy	medium	
Toughness	medium	
Plasticity	low	
Dry strength	high	
Feel	granular	
Behaviour in water	slow disintegration	
Behaviour in air	slow drying	
Cohesion	plastic deformation	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

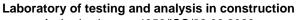
SAMPLE PICTURES

non-calcareous

inorganic

Fig. 1 Fig. 2

Laboratory personel responsible for description: Fodor-lanosi Evelin


Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

 $This test \, report \, has \, been \, prepared \, in \, two \, originals, \, one \, for \, the \, customer \, and \, one \, for \, S.C. \, GeoSearch \, S.R.L. \, and \, customer \, and \, custome$

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

42675

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county Date of description 5-Feb-2024

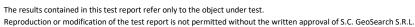
Superior depth of sample (m) 5.50 Borehole No. FS01 Sample No.


Inferior depth of sample (m) 7.00

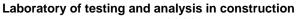
DESCRIPTION OF SOIL PROPERTIES		
Type of soil		coarse soil
	Primary fraction	SAND
Particle size	Secondary fraction I.	gravel
distribution	Secondary fraction II.	clay
	Tertiary fraction	-
Particle shape	Form	cubic
(in case of gravel,	Angularity/roundness	subrounded
cobble and boulders)	Surface texture	smooth
Colour of cample	Hue	brown
Colour of sample	Chroma	-
Consistency of fine fraction		-
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION		
Dilatancy	-	
Toughness	-	
Plasticity	-	
Dry strength	-	
Feel	-	
Behaviour in water	-	
Behaviour in air	-	
Cohesion	-	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES



Laboratory personel responsible for description: Fodor-Ianosi Evelin


> Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory

eng. geol. Nagy Szilárd

This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

42677

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS

Location Glodeni municipality, CF 50604, 52635, 52833, Mureş county Date of description 5-Feb-2024

Borehole No. FS02 Superior depth of sample (m) 1.60 Sample No.

Inferior depth of sample (m) 2.00

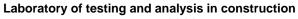
DESCRIPTION OF SOIL PROPERTIES		
Type of soil		fine soil
	Primary fraction	CLAY
Particle size	Secondary fraction I.	sand
distribution	Secondary fraction II.	silt
	Tertiary fraction	-
Particle shape (in case of gravel,	Form	-
	Angularity/roundness	-
cobble and boulders)	Surface texture	-
Colour of comple	Hue	brown
Colour of sample	Chroma	yellowish
Consistency of fine fraction		firm
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION		
Dilatancy	medium	
Toughness	medium	
Plasticity	medium	
Dry strength	high	
Feel	granular	
Behaviour in water	slow disintegration	
Behaviour in air	slow drying	
Cohesion	plastic deformation	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES

Fig. 1 Fig. 2

Laboratory personel responsible for description: Fodor-lanosi Evelin


Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

 $This test \, report \, has \, been \, prepared \, in \, two \, originals, \, one \, for \, the \, customer \, and \, one \, for \, S.C. \, GeoSearch \, S.R.L. \, and \, customer \, and \, custome$

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county Date of description 5-Feb-2024

Superior depth of sample (m) 2.00 Borehole No. FS02

Inferior depth of sample (m) 2.45 Sample No.

42678

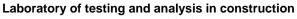
DESCRIPTION OF SOIL PROPERTIES		
Type of soil		fine soil
	Primary fraction	CLAY
Particle size	Secondary fraction I.	sand
distribution	Secondary fraction II.	silt
	Tertiary fraction	-
Particle shape	Form	-
(in case of gravel,	Angularity/roundness	-
cobble and boulders)	Surface texture	-
Colour of cample	Hue	yellow
Colour of sample	Chroma	brownish
Consistency of fine fraction		firm
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION	
Dilatancy	medium
Toughness	medium
Plasticity	medium
Dry strength	high
Feel	granular
Behaviour in water	slow disintegration
Behaviour in air	slow drying
Cohesion	plastic deformation
DESCRIPTION OF BEDDING AND DISCONTINUITY	
Bedding	no bedding
Discontinuity	without discontinuities

SAMPLE PICTURES

Fig. 1 Fig. 2

Laboratory personel responsible for description: Fodor-Ianosi Evelin


> Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory

eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test. Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

42679

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county Date of description 5-Feb-2024

Superior depth of sample (m) 2.60 Borehole No. FS02 Sample No.

Inferior depth of sample (m) 3.00

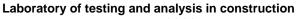
DESCRIPTION OF SOIL PROPERTIES		
Type of soil		fine soil
	Primary fraction	CLAY
Particle size	Secondary fraction I.	sand
distribution	Secondary fraction II.	silt
	Tertiary fraction	-
Particle shape	Form	-
(in case of gravel,	Angularity/roundness	-
cobble and boulders)	Surface texture	-
Colour of sample	Hue	yellow
Colour of sample	Chroma	greyish
Consistency of fine	e fraction	firm
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION		
Dilatancy	medium	
Toughness	medium	
Plasticity	medium	
Dry strength	high	
Feel	granular	
Behaviour in water	slow disintegration	
Behaviour in air	slow drying	
Cohesion	plastic deformation	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES

Fig. 1 Fig. 2

Laboratory personel responsible for description: Fodor-Ianosi Evelin


> Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory

eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

42680

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county Date of description 5-Feb-2024

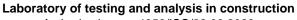
Superior depth of sample (m) 3.60 Borehole No. FS02 Sample No. Inferior depth of sample (m) 3.78

DESCRIPTION OF SOIL PROPERTIES		
Type of soil		coarse soil
	Primary fraction	SAND
Particle size	Secondary fraction I.	gravel
distribution	Secondary fraction II.	clay
	Tertiary fraction	-
Particle shape	Form	cubic
(in case of gravel,	Angularity/roundness	subangular
cobble and boulders)	Surface texture	smooth
Calaur of samuela	Hue	yellow
Colour of sample	Chroma	brownish
Consistency of fin	e fraction	-
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

15-51-161-161-161-161-161-161-161-161-16		
IDENTIFICATION OF FINE FRACTION		
Dilatancy	-	
Toughness	-	
Plasticity	-	
Dry strength	-	
Feel	-	
Behaviour in water	-	
Behaviour in air	-	
Cohesion	-	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES

Fig. 1 Fig. 2


Laboratory personel responsible for description: Fodor-Ianosi Evelin

> Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory

eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test. Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county Date of description 5-Feb-2024

Superior depth of sample (m) 4.00 Borehole No. FS02 Sample No. 42681 Inferior depth of sample (m) 5.00

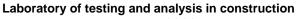
DESCRIPTION OF SOIL PROPERTIES		PROPERTIES
Type of soil		coarse soil
	Primary fraction	SAND
Particle size	Secondary fraction I.	clay
distribution	Secondary fraction II.	gravel
	Tertiary fraction	-
Particle shape	Form	cubic
(in case of gravel,	Angularity/roundness	subrounded
cobble and boulders)	Surface texture	smooth
Calaur of samuela	Hue	brown
Colour of sample	Chroma	yellowish
Consistency of fin	e fraction	firm
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION			
Dilatancy	medium		
Toughness	medium		
Plasticity	low		
Dry strength	high		
Feel	granular		
Behaviour in water	fast disintegration		
Behaviour in air	fast drying		
Cohesion	plastic deformation		
DESCRIPTION OF BEDDING AND DISCONTINUITY			
Bedding	no bedding		
Discontinuity	without discontinuities		

SAMPLE PICTURES

Fig. 2 Fig. 1

Laboratory personel responsible for description: Fodor-Ianosi Evelin


> Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory

eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county Date of description 5-Feb-2024

Superior depth of sample (m) 7.00 Borehole No. FS02 Sample No. 42682 Inferior depth of sample (m) 8.00

DESCRIPTION OF SOIL PROPERTIES		. PROPERTIES
Type of soil		coarse soil
	Primary fraction	SAND
Particle size	Secondary fraction I.	gravel
distribution	Secondary fraction II.	silt
	Tertiary fraction	
Particle shape	Form	cubic
(in case of gravel,	Angularity/roundness	subrounded
cobble and boulders)	Surface texture	smooth
Colour of sample	Hue	yellow
Colour or sample	Chroma	brownish
Consistency of fine	e fraction	-
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION		
Dilatancy	-	
Toughness	-	
Plasticity	-	
Dry strength	-	
Feel	-	
Behaviour in water	-	
Behaviour in air	-	
Cohesion	-	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES

Fig. 1 Fig. 2

Laboratory personel responsible for description: Fodor-Ianosi Evelin

> Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory

eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS

Location Glodeni municipality, CF 50604, 52635, 52833, Mureş county Date of description 5-Feb-2024

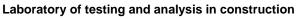
Borehole No. FS03 Superior depth of sample (m) 1.00 Sample No. 42685 Inferior depth of sample (m) 1.40

DESCRIPTION OF SOIL PROPERTIES		
Type of soil		fine soil
	Primary fraction	CLAY
Particle size	Secondary fraction I.	sand
distribution	Secondary fraction II.	silt
	Tertiary fraction	-
Particle shape (in case of gravel,	Form	-
	Angularity/roundness	-
cobble and boulders)	Surface texture	-
Colour of sample	Hue	brown
Colour of sample	Chroma	yellowish
Consistency of fine	e fraction	stiff
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION			
IDENTIFICATION OF FINE FRACTION			
Dilatancy	slow		
Toughness	medium		
Plasticity	medium		
Dry strength	high		
Feel	granular		
Behaviour in water	slow disintegration		
Behaviour in air	slow drying		
Cohesion	plastic deformation		
DESCRIPTION OF BEDDING AND DISCONTINUITY			
Bedding	no bedding		
Discontinuity	without discontinuities		

SAMPLE PICTURES

Fig. 1 Fig. 2


Laboratory personel responsible for description: Fodor-lanosi Evelin

Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test. $\label{eq:contained}$

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L. This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

42686

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county Date of description 5-Feb-2024

Superior depth of sample (m) 1.40 Borehole No. FS03

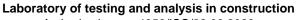
Inferior depth of sample (m) 1.85

IDENTIFICATION OF FINE FRACTION		
Dilatancy	slow	
Toughness	medium	
Plasticity	medium	
Dry strength	high	
Feel	adherent	
Behaviour in water	slow disintegration	
Behaviour in air	slow drying	
Cohesion	plastic deformation	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	
	-	

Sample No.

DESCRIPTION OF SOIL PROPERTIES		
Type of soil		fine soil
	Primary fraction	CLAY
Particle size	Secondary fraction I.	sand
distribution	Secondary fraction II.	silt
	Tertiary fraction	-
Particle shape	Form	-
(in case of gravel,	Angularity/roundness	-
cobble and boulders)	Surface texture	-
	Hue	yellow
Colour of sample	Chroma	brownish
Consistency of fin	e fraction	firm
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

SAMPLE PICTURES


Fig. 2 Fig. 1

Laboratory personel responsible for description: Fodor-Ianosi Evelin

> Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test. Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L. This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS

Location Glodeni municipality, CF 50604, 52635, 52833, Mures county Date of description 5-Feb-2024

Borehole No. FS03 Superior depth of sample (m) 2.00 Sample No. 42687

Inferior depth of sample (m) 2.40

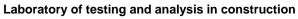
DESCRIPTION OF SOIL PROPERTIES		
Type of soil		fine soil
	Primary fraction	CLAY
Particle size	Secondary fraction I.	sand
distribution	Secondary fraction II.	silt
	Tertiary fraction	-
Particle shape	Form	-
(in case of gravel, cobble and boulders)	Angularity/roundness	-
	Surface texture	-
	Hue	yellow
Colour of sample	Chroma	brownish
Consistency of fin	e fraction	firm
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTI	IDENTIFICATION OF FINE FRACTION		
Dilatancy	slow		
Toughness	medium		
Plasticity	medium		
Dry strength	high		
Feel	adherent		
Behaviour in water	slow disintegration		
Behaviour in air	slow drying		
Cohesion	plastic deformation		
DESCRIPTION OF BEDDING AND DISCONTINUITY			
Bedding	no bedding		
Discontinuity	without discontinuities		

SAMPLE PICTURES

Fig. 1 Fig. 2

Laboratory personel responsible for description: Fodor-lanosi Evelin


Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

 $This test \, report \, has \, been \, prepared \, in \, two \, originals, \, one \, for \, the \, customer \, and \, one \, for \, S.C. \, GeoSearch \, S.R.L. \, and \, customer \, and \, one \, for \, S.C. \, GeoSearch \, S.R.L. \, and \, customer \, a$

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client	S.C. Glodeni Energy S.R.L.	Project No.	2819LGS
Location	Glodeni municipality, CF 50604, 52635, 52833, Mureş county	Date of description	5-Feb-2024

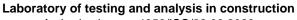
Borehole No.	FSO3	Superior depth of sample (m)	3.00	Sample No.	42688
		Inferior depth of sample (m)	3.40		

DESCRIPTION OF SOIL PROPERTIES		
Type of soil		coarse soil
	Primary fraction	SAND
Particle size	Secondary fraction I.	clay
distribution	Secondary fraction II.	silt
	Tertiary fraction	-
Particle shape (in case of gravel, cobble and boulders)	Form	-
	Angularity/roundness	-
	Surface texture	-
Calaur of samuela	Hue	yellow
Colour of sample	Chroma	brownish
Consistency of fine fraction		firm
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION		
Dilatancy	medium	
Toughness	low	
Plasticity	low	
Dry strength	low	
Feel	granular	
Behaviour in water	fast disintegration	
Behaviour in air	fast drying	
Cohesion	crumbles	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES

Fig. 1 Fig. 2


Laboratory personel responsible for description: Fodor-Ianosi Evelin

> Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

42689

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county Date of description 5-Feb-2024

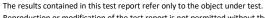
Superior depth of sample (m) 4.30 Borehole No. FS03 Sample No.

Inferior depth of sample (m) 6.00

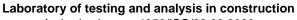
DESCRIPTION OF SOIL PROPERTIES		
Type of soil		coarse soil
	Primary fraction	SAND
Particle size	Secondary fraction I.	gravel
distribution	Secondary fraction II.	silt
	Tertiary fraction	-
Particle shape	Form	cubic
(in case of gravel, cobble and boulders)	Angularity/roundness	subrounded
	Surface texture	rough
Calaura et annuala	Hue	brown
Colour of sample	Chroma	yellowish
Consistency of fine fraction		-
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION		
Dilatancy	-	
Toughness	-	
Plasticity	-	
Dry strength	-	
Feel	-	
Behaviour in water	-	
Behaviour in air	-	
Cohesion	-	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES


Fig. 2 Fig. 1

Laboratory personel responsible for description: Fodor-Ianosi Evelin


> Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory

eng. geol. Nagy Szilárd

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF LABORATORY SAMPLES

according to SR EN ISO 14688-1:2018

Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county Date of description 5-Feb-2024

Superior depth of sample (m) 7.00 Borehole No. FS03 Sample No. 42690 Inferior depth of sample (m) 8.00

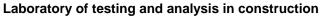
DESCRIPTION OF SOIL PROPERTIES		
Type of soil		coarse soil
	Primary fraction	SAND
Particle size	Secondary fraction I.	gravel
distribution	Secondary fraction II.	silt
	Tertiary fraction	-
Particle shape (in case of gravel, cobble and boulders)	Form	cubic
	Angularity/roundness	subrounded
	Surface texture	smooth
	Hue	brown
Colour of sample	Chroma	yellowish
Consistency of fine fraction		-
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTI	FICATION OF FINE FRACTION	
IDENTI	FICATION OF FINE FRACTION	
Dilatancy	-	
Toughness	-	
Plasticity	-	
Dry strength	-	
Feel	-	
Behaviour in water	-	
Behaviour in air	-	
Cohesion	-	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES

Fig. 2 Fig. 1

Laboratory personel responsible for description: Fodor-Ianosi Evelin


> Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory

eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF SOIL SAMPLES IN LABORATORY

according to SR EN ISO 14688-1:2018

Test report - no. 47589-RDM/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Project No. 3140LGS

MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Location Date of description 24-Mar-2025

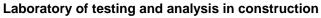
Superior depth of sample (m) 1.30 Borehole No. FS04 Sample No. 47589

Inferior depth of sample (m) 1.50

DESCRIPTION OF SOIL PROPERTIES		
Type of soil		Fine soil
	Primary fraction	CLAY
Particle size	Secondary fraction I.	silt
distribution	Secondary fraction II.	sand
	Tertiary fraction	-
Particle shape	Form	-
(in case of gravel, cobble and boulders)	Angularity/roundness	-
	Surface texture	-
	Hue	brown
Colour of sample	Chroma	greyish
Consistency of fine soil		stiff
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFI	IDENTIFICATION OF FINE FRACTION		
Dilatancy	slow		
Toughness	medium		
Plasticity	medium		
Dry strength	high		
Feel	adherent		
Behaviour in water	slow disintegration		
Behaviour in air	slow drying		
Cohesion	plastic deformation		
DESCRIPTION OF BEDDING AND DISCONTINUITY			
Bedding	no bedding		
Discontinuity	without discontinuities		

SAMPLE PICTURES


Fig. 2 Bunu Eduard, Fodor-Ianosi Evelin

aboratory evaluator eng. geol. Gáll Hunor

Laboratory personel responsible for description:

Head of laboratory eng. geol. Nagy Szilárd

FL-111

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF SOIL SAMPLES IN LABORATORY

according to SR EN ISO 14688-1:2018

Test report - no. 47590-RDM/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Project No. 3140LGS

Location MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Date of description 25-Mar-2025

Superior depth of sample (m) 1.50

Borehole No. FS04

Sample No. 47590

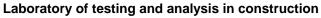
Inferior depth of sample (m) 1.70

DESCRIPTION OF SOIL PROPERTIES		
Type of soil		Fine soil
	Primary fraction	CLAY
Particle size	Secondary fraction I.	silt
distribution	Secondary fraction II.	sand
	Tertiary fraction	-
Particle shape	Form	-
(in case of gravel, cobble and boulders)	Angularity/roundness	-
	Surface texture	-
Colour of sample	Hue	brown
Colour of Sample	Chroma	greyish
Consistency of fin	e soil	stiff
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION		
Dilatancy	slow	
Toughness	medium	
Plasticity	medium	
Dry strength	high	
Feel	adherent	
Behaviour in water	slow disintegration	
Behaviour in air	slow drying	
Cohesion	plastic deformation	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES

Laboratory personel responsible for description:


Bunu Eduard, Fodor-Ianosi Evelin

Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

File code

FL-111

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

47597

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF SOIL SAMPLES IN LABORATORY

according to SR EN ISO 14688-1:2018

Test report - no. 47597-RDM/03.31.2025

S.C. GLODENI ENERGY S.R.L. Client Project No. 3140LGS

MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Location Date of description 24-Mar-2025

Superior depth of sample (m) 2.50 Borehole No. FS04

Inferior depth of sample (m) 3.20

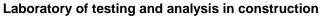
IDENTIFICATION OF FINE EDACTION		
IDENTIFICATION OF FINE FRACTION		
Dilatancy	-	
Toughness	-	
Plasticity	-	
Dry strength	-	
Feel	-	
Behaviour in water	-	
Behaviour in air	-	
Cohesion	-	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

Sample No.

DESCRIPTION OF SOIL PROPERTIES		PROPERTIES
Type of soil		Coarse soil
	Primary fraction	SAND
Particle size	Secondary fraction I.	gravel
distribution	Secondary fraction II.	silt
	Tertiary fraction	-
Particle shape	Form	cubic
(in case of gravel, cobble and boulders)	Angularity/roundness	subrounded
	Surface texture	rough
Colour of comple	Hue	brown
Colour of sample	Chroma	yellowish
Consistency of fine soil		-
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

SAMPLE PICTURES

Fig. 1 Laboratory personel responsible for description: Bunu Eduard, Fodor-Ianosi Evelin


> aboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

FL-111

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF SOIL SAMPLES IN LABORATORY

according to SR EN ISO 14688-1:2018

Test report - no. 47591-RDM/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Project No. 3140LGS

Location MUNICIPALITY VOIVODENI AND GLODENI, MURE\$ COUNTY, ROMÂNIA Date of descriptios 24-Mar-2025

Superior depth of sample (m) 1.30

Borehole No. FS05 Sample No. 47591

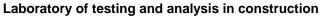
Inferior depth of sample (m) 1.50

DESCRIPTION OF SOIL PROPERTIES		
Type of soil		Fine soil
	Primary fraction	CLAY
Particle size	Secondary fraction I.	silt
distribution	Secondary fraction II.	sand
	Tertiary fraction	-
Particle shape	Form	-
(in case of gravel, cobble and boulders)	Angularity/roundness	-
	Surface texture	-
Colour of sample	Hue	grey
Colour of sample	Chroma	brownish
Consistency of fin	e soil	firm
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION		
Dilatancy	slow	
Toughness	medium	
Plasticity	medium	
Dry strength	high	
Feel	adherent	
Behaviour in water	slow disintegration	
Behaviour in air	slow drying	
Cohesion	plastic deformation	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES

Laboratory personel responsible for description:


Bunu Eduard, Fodor-Ianosi Evelin

Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

File code

FL-111

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

47592

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF SOIL SAMPLES IN LABORATORY

according to SR EN ISO 14688-1:2018

Test report - no. 47592-RDM/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Project No. 3140LGS

Location MUNICIPALITY VOIVODENI AND GLODENI, MURE\$ COUNTY, ROMÂNIA Date of descriptios 24-Mar-2025

Borehole No. FS05 Superior depth of sample (m) 1.50 Sample No.

Inferior depth of sample (m) 1.70

DESCRIPTION OF SOIL PROPERTIES		
Type of soil		Fine soil
	Primary fraction	CLAY
Particle size	Secondary fraction I.	silt
distribution	Secondary fraction II.	sand
	Tertiary fraction	-
Particle shape	Form	-
(in case of gravel, cobble and boulders)	Angularity/roundness	-
	Surface texture	-
Colour of sample	Hue	brown
Colour of sample	Chroma	-
Consistency of fine soil		firm
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION		
Dilatancy	slow	
Toughness	medium	
Plasticity	medium	
Dry strength	high	
Feel	adherent	
Behaviour in water	slow disintegration	
Behaviour in air	slow drying	
Cohesion	plastic deformation	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES

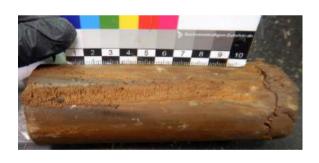
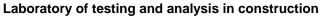


Fig. 1 Fig. 2

Laboratory personel responsible for description:

Bunu Eduard, Fodor-Ianosi Evelin

Laboratory evaluator eng. geol. Gáll Hunor


Head of laboratory eng. geol. Nagy Szilárd

de

FL-111

The results contained in this test report refer only to the object under test.

 $Reproduction\ or\ modification\ of\ the\ test\ report\ is\ not\ permitted\ without\ the\ written\ approval\ of\ S.C.\ GeoSearch\ S.R.L.$

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF SOIL SAMPLES IN LABORATORY

according to SR EN ISO 14688-1:2018

Test report - no. 47593-RDM/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Project No. 3140LGS

Location MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Date of description 24-Mar-2025

Superior depth of sample (m) 1.50

Borehole No. FS06 Sample No. 47593

Inferior depth of sample (m) 1.70

DESCRIPTION OF SOIL PROPERTIES		
Type of soil		Fine soil
	Primary fraction	CLAY
Particle size	Secondary fraction I.	silt
distribution	Secondary fraction II.	sand
	Tertiary fraction	-
Particle shape	Form	-
(in case of gravel, cobble and boulders)	Angularity/roundness	-
	Surface texture	-
Colour of sample	Hue	brown
Colour of sample	Chroma	-
Consistency of fine soil		firm
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

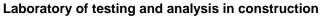
IDENTIFICATION OF FINE FRACTION		
Dilatancy	slow	
Toughness	medium	
Plasticity	medium	
Dry strength	high	
Feel	adherent	
Behaviour in water	slow disintegration	
Behaviour in air	slow drying	
Cohesion	plastic deformation	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES

Laboratory personel responsible for description:

Bunu Eduard, Fodor-lanosi Evelin

Laboratory evaluator eng. geol. Gáll Hunor


Head of laboratory eng. geol. Nagy Szilárd

File code

FL-111

The results contained in this test report refer only to the object under test.

 $Reproduction\ or\ modification\ of\ the\ test\ report\ is\ not\ permitted\ without\ the\ written\ approval\ of\ S.C.\ GeoSearch\ S.R.L.$

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF SOIL SAMPLES IN LABORATORY

according to SR EN ISO 14688-1:2018

Test report - no. 47594-RDM/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Project No. 3140LGS

Location MUNICIPALITY VOIVODENI AND GLODENI, MURE\$ COUNTY, ROMÂNIA Date of descriptios 24-Mar-2025

Superior depth of sample (m) 1.70

Borehole No. FS06 Sample No. 47594

Inferior depth of sample (m) 2.00

DESCRIPTION OF SOIL PROPERTIES		
Type of soil		Fine soil
	Primary fraction	CLAY
Particle size	Secondary fraction I.	silt
distribution	Secondary fraction II.	sand
	Tertiary fraction	-
Particle shape	Form	-
(in case of gravel,	Angularity/roundness	-
cobble and boulders)	Surface texture	-
	Hue	brown
Colour of sample	Chroma	greyish
Consistency of fin	e soil	firm
Carbonate content		non-calcareous
Organic content		inorganic
Macroscopic observations		-

IDENTIFICATION OF FINE FRACTION		
Dilatancy	slow	
Toughness	medium	
Plasticity	medium	
Dry strength	high	
Feel	adherent	
Behaviour in water	slow disintegration	
Behaviour in air	slow drying	
Cohesion	plastic deformation	
DESCRIPTION OF BEDDING AND DISCONTINUITY		
Bedding	no bedding	
Discontinuity	without discontinuities	

SAMPLE PICTURES

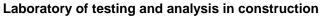
Fig. 1 Fig. 2

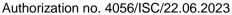
Laboratory personel responsible for description:

Bunu Eduard, Fodor-Ianosi Evelin

Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd


code


FL-111

The results contained in this test report refer only to the object under test.

 $Reproduction\ or\ modification\ of\ the\ test\ report\ is\ not\ permitted\ without\ the\ written\ approval\ of\ S.C.\ GeoSearch\ S.R.L.$

This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590

E-mail: office@geosearch.ro

47595

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF SOIL SAMPLES IN LABORATORY

according to SR EN ISO 14688-1:2018

Test report - no. 47595-RDM/03.31.2025

S.C. GLODENI ENERGY S.R.L. Client Project No. 3140LGS

MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Location Date of description 24-Mar-2025

Superior depth of sample (m) 1.30 Borehole No. FS07 Sample No.

Inferior depth of sample (m) 1.50

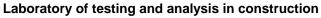
DESCRIPTION OF SOIL PROPERTIES				
Type of soil	Fine soil			
	Primary fraction	CLAY		
Particle size	Secondary fraction I.	silt		
distribution	Secondary fraction II.	sand		
	Tertiary fraction	carbonate fragments		
Particle shape	Form	-		
(in case of gravel,	Angularity/roundness	-		
cobble and boulders)	Surface texture	-		
Colour of sample	Hue	brown		
Colour of sample	Chroma	-		
Consistency of fin	e soil	firm		
Carbonate conten	t	slightly calcareous		
Organic content		inorganic		
Macroscopic obse	rvations	-		

IDENTIFICATION OF FINE FRACTION					
Dilatancy	slow				
Toughness	high				
Plasticity	high				
Dry strength	high				
Feel	adherent				
Behaviour in water	slow disintegration				
Behaviour in air	slow drying				
Cohesion	plastic deformation				
DESCRIPTION C	OF BEDDING AND DISCONTINUITY				
Bedding	no bedding				
Discontinuity	without discontinuities				

SAMPLE PICTURES

Fig. 1 Fig. 2

Laboratory personel responsible for description: Bunu Eduard, Fodor-Ianosi Evelin


> aboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

FL-111

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

IDENTIFICATION AND MACROSCOPIC DESCRIPTION OF SOIL SAMPLES IN LABORATORY

according to SR EN ISO 14688-1:2018

Test report - no. 47596-RDM/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Project No. 3140LGS

Location MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Date of descriptio: 24-Mar-2025

Superior depth of sample (m) 1.50

Borehole No. FS07 Sample No. 47596

Inferior depth of sample (m) 1.70

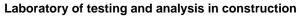
DESCRIPTION OF SOIL PROPERTIES				
Type of soil		Fine soil		
	Primary fraction	CLAY		
Particle size	Secondary fraction I.	sand		
distribution	Secondary fraction II.	silt		
	Tertiary fraction	-		
Particle shape	Form	-		
(in case of gravel,	Angularity/roundness	-		
cobble and boulders)	Surface texture	-		
Colour of sample	Hue	brown		
Colour of sample	Chroma	yellowish		
Consistency of fin	e soil	firm		
Carbonate conten	t	non-calcareous		
Organic content		inorganic		
Macroscopic obse	ervations	-		

IDENTIFI	IDENTIFICATION OF FINE FRACTION					
Dilatancy	medium					
Toughness	low					
Plasticity	low					
Dry strength	low					
Feel	granular					
Behaviour in water	fast disintegration					
Behaviour in air	-					
Cohesion	crumbles					
DESCRIPTION C	OF BEDDING AND DISCONTINUITY					
Bedding	no bedding					
Discontinuity	without discontinuities					

SAMPLE PICTURES

Fig. 1 Fig. 2

Laboratory personel responsible for description:


Bunu Eduard, Fodor-lanosi Evelin

Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

code

FL-111

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Date of Glodeni municipality, CF 50604, 52635, 52833, Mureș county Location 18.01.2024 reception Superior depth of 2.00 Date of test 05.02.2024 sample (m) Sample

Borehole No. FS01 low plasticity sandy CLAY description Inferior depth of sample 2.40

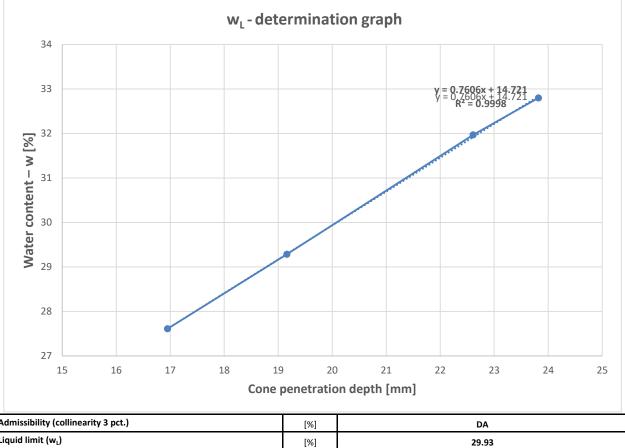
42672 Sample No. (m)

DETERMIN	NATION OF WATER	CONTENT - FL	. – 093		
Characteristics	unit	Specimen no	o. 1 Spe	Specimen no. 2	
Characteristics	unit	1		2	3
Container no.	[-]	377		588	-
Mass of container (m _c)	[g]	34.83		42.62	-
Mass of moist test specimen + container (m _u)	[g]	165.060		985.200	-
Mass of dried test specimen + container (m _d)	[g]	143.810		829.750	-
Formula $w = \frac{m_u - m_d}{m_d - m_c} x 100$			-		
Water content (w)	[%]	19.50		19.75	-
Admissibility (Max - Min < 2%)	[%]		0.25 – 4	CCEPTED	
Average result	[%]		19	9.62	
DETERMINATION OF PLAS	STIC LIMIT – THREA	D ROLLING TES	T METHOD -	FL – 094	
Characteristics	unit	Specimen no	o. 1 Spe	cimen no. 2	Specimen no. 3
Characteristics	unit	1		2	3
Container no.	[-]	226		231	271
Mass of container (m _c)	[g]	21.11		21.50	21.20
Mass of moist test specimen + container (A)	[g]	23.830		24.400	23.700
Mass of dried test specimen + container (B)	[g]	23.510		24.080	23.420
Formula $w_p = \frac{A - B}{B - mC} x 100$	•				<u>I</u>
Plastic limit (w _P)	[%]	13.33		12.40	12.61
Admissibility (Max - Min < 2 %)	[%]	1	0.93 – 4	CCEPTED	<u>I</u>
Average result	[%]		12	2.78	
DETERMINATION OF L	LIQUID LIMIT – FALI	CONE TEST M	IETHOD – FL –	094	
Characteristics		Specimen no. 1	Specimen no. 2	Specimen no. 3	Specimen no. 4
Characteristics	unit	1	2	3	4
Container no.	[-]	998	1000	1002	1007
Mass of the container (C)	[g]	12.63	12.35	12.79	11.84
Mass of moist test specimen + container (A)	[g]	27.420	29.700	28.890	30.100
Mass of dried test specimen + container (B)	[g]	24.220	25.770	24.990	25.590
Cone penetration depth (N)	[mm]	16.95	19.16	22.61	23.82
Water content (w)	[%]	27.61	29.28	31.97	32.80

VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING TO 20 mm PENETRATION.

Laboratory evaluator

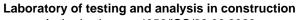
eng. geol. Gáll Hunor


Head of laboratory eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test. Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L. This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report


Admissibility (collinearity 3 pct.)	[%]	DA
Liquid limit (w _L)	[%]	29.93
Correlation coefficient	[-]	0.9998

DETERMINATION OF FREE SWELL INDEX (12g MATERIAL) - FL- 096								
Characteristics	unit -	Specimen no. 1	Specimen no. 2	Specimen no. 3				
Characteristics		1	2	3				
Graduated cyilinder no.	[-]	1	2	201				
Initial volume of soil specimen (V _i)	[cm ³]	10	10	10				
Final volume of soil specimen (V _f)	[cm ³]	15	15	15				
Formula $U_L = 10x(V_f - V_i)$	Formula $U_L = 10x(V_f - V_i)$							
Free swell index (U _L)	[%]	50	50	50				
Admissibility (Max - Min < 10%)	[%]	0 – ACCEPTED						
Average result	[%]		50					

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborator

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF BULK AND PARTICLE DENSITY OF SOILS according to SR EN ISO 17892-2:2015, SR EN ISO 17892-3:2016 **Test report**

S.C. Glodeni Energy S.R.L. Client Project No. 2819LGS

Date of Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county 18.01.2024 reception

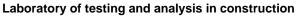
Superior depth of

2.00

Date of test

05.02.2024

sample (m) Sample Borehole No. FS01 low plasticity sandy CLAY description Inferior depth of


2.40 Sample No. 42672 sample (m)

DETERMINATION OF BULK DENSITY – IMMERSION IN FLUID METHOD – FL – 095						
Charactaristics	it	Specimen no. 1	Specimen no. 2	Specimen no. 3		
Characteristics	unit	1	2	3		
Mass of the soil specimen (m ₀)	[g]	29.980	30.590	33.330		
Mass of the specimen with coating wax (m ₁)	[g]	31.470	32.670	34.790		
Mass of the immersed specimen (m ₂)	[g]	14.110	14.260	15.780		
Formula $V_1 = rac{m_1 - m_2}{ ho_{fluid}}, ho_{fluid}$	$=0,998g/cm^3$	$V_2 = \frac{m_1 - m_0}{\rho_{wax}}$	$ ho_{specimen}$	$=\frac{m_0}{V_1-V_2}$		
Volume of the immersed specimen (V ₁)	[cm ³]	17.39	18.45	19.05		
Volume of the coating wax (V ₂)	[cm ³]	1.62	2.26	1.59		
Bulk density (ρ _i)	[g/cm ³]	1.90	1.89	1.91		
Admissibility ((ρ_i - ρ_{i_min}) / ρ_i < 1%)	[%]	0.55 – ACCEPTED	0 – ACCEPTED	0.99 – ACCEPTED		
Average result - Bulk Density (ρ)	[g/cm ³]	1.90				
Average result - Bulk unit weight (γ)	[kN/m ³]	18.64				
DETERMINATION OF PARTIC	LE DENSITY – I	FLUID PYCNOMETER	METHOD – FL – 099			
Characteristics	unit	Specimen no. 1	Spe	ecimen no. 2		
Characteristics	uiiit	1		2		
Pycnometer no.	[-]	-		-		
Mass of the oven dried test specimen (m ₄)	[g]	-		-		
Mass of the pycnometer + specimen + control fluid (m ₃)	[g]	-		-		
Mass of the dry pycnometer (m ₀)	[g]	-		-		
Mass of the pycnometer + control fluid (m ₁)	[g]	-		-		
Mass of the pycnometer + dry specimen (m ₂)	[g]	-		-		
Formula $ ho_s =$	$\frac{m_4}{(m_1 - m_0) - (m_3 - m_0)}$	$\frac{m_4}{1-m_0)-(m_3-m_2)} * \rho_L$ $\rho_{L(20^{\circ}C)} = 0.99823 \text{ g/cm}^3$				
Soil particle density (ρ _s)	[g/cm ³]	-		-		
Soil particle unit weight (γ _s)	[kN/m ³]	-		-		
Admissibility (ρ_{s2} -min(ρ_{s1} , ρ_{s2}) < 0.03 g/cm ³)	[g/cm ³]	-		-		
Average result - Soil particle density (ρ _{s - final})	[g/cm ³]		-			
Average result - Soil particle unit weight (γ _{s-final})	[kN/m³]		-			

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laboratory

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Date of Glodeni municipality, CF 50604, 52635, 52833, Mureș county Location 18.01.2024 reception Superior depth of 3.60 Date of test 05.02.2024 sample (m) Sample gravelly low plasticity clayey Borehole No. FS01 description SAND Inferior depth of sample

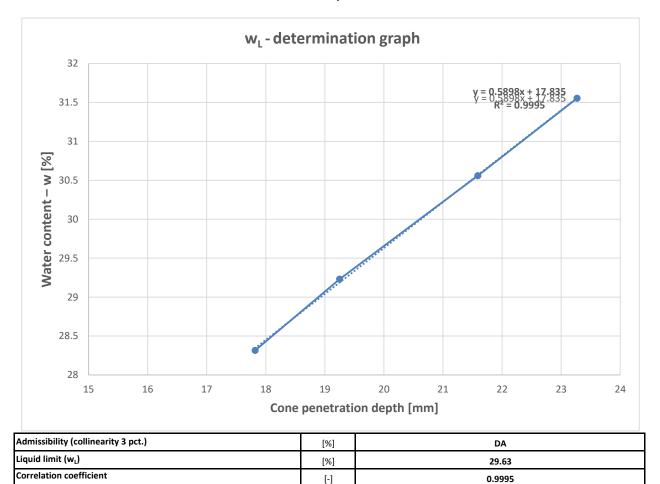
4.00 42674 Sample No. (m)

DETERMI	NATION OF WATER	CONTENT - FL	. – 093		
Characteristics	unit	Specimen n	o. 1 Spe	Specimen no. 2	
Character istics	unit	1		2	3
Container no.	[-]	416		1053	-
Mass of container (m _c)	[g]	34.93		226.65	•
Mass of moist test specimen + container (m _u)	[g]	257.490		1491.180	-
Mass of dried test specimen + container (m _d)	[g]	225.010		1304.620	-
Formula $w = \frac{m_u - m_d}{m_d - m_c} x 100$	-	-	-		
Water content (w)	[%]	17.09		17.31	-
Admissibility (Max - Min < 2%)	[%]		0.22 – 4	ACCEPTED	
Average result	[%]		17	7.20	
DETERMINATION OF PLAS	STIC LIMIT – THREA	D ROLLING TES	T METHOD – I	FL – 094	
Characteristics	unit	Specimen n	o. 1 Spe	cimen no. 2	Specimen no. 3
Characteristics	unic	1		2	
Container no.	[-]	896		897	898
Mass of container (m _c)	[g]	19.92		20.61	21.99
Mass of moist test specimen + container (A)	[g]	22.770		23.100	24.380
Mass of dried test specimen + container (B)	[g]	22.430		22.810	24.100
Formula $w_p = \frac{A - B}{B - mC} \times 100$					
Plastic limit (w _P)	[%]	13.55 13.18 13.3			13.27
Admissibility (Max - Min < 2 %)	[%]		0.36 – 4	CCEPTED	
Average result	[%]		13	3.33	
DETERMINATION OF	LIQUID LIMIT – FAL	L CONE TEST IV	IETHOD – FL –	094	
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3	Specimen no. 4
character issues	unic	1	2	3	4
Container no.	[-]	962	963	965	968
Mass of the container (C)	[g]	11.93	11.61	11.69	12.91
Mass of moist test specimen + container (A)	[g]	29.830	31.770	31.770	31.880
Mass of dried test specimen + container (B)	[g]	25.880	27.210	27.070	27.330
Cone penetration depth (N)	[mm]	17.82	19.25	21.59	23.27
Water content (w)	[%]	28.32	29.23	30.56	31.55

VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING TO 20 mm PENETRATION.

Laboratory evaluator

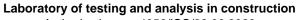
eng. geol. Gáll Hunor


Head of laboratory eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test. $Reproduction \ or \ modification \ of \ the \ test \ report \ is \ not \ permitted \ without \ the \ written \ approval \ of S.C. \ GeoSearch \ S.R.L.$ This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report



DETERMINATION OF FREE SWELL INDEX (12g MATERIAL) - FL- 096						
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3		
Characteristics	unit	1	2	3		
Graduated cyilinder no.	[-]	-	-	-		
Initial volume of soil specimen (V _i)	[cm ³]	-	-	-		
Final volume of soil specimen (V _f)	[cm ³]	-	-	-		
Formula $U_L = 10x(V_f - V_f)$	$-V_i$)			•		
Free swell index (U _L)	[%]	-	-	-		
Admissibility (Max - Min < 10%)	[%]		-	-		
Average result	[%]		-			

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laboratory

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF BULK AND PARTICLE DENSITY OF SOILS according to SR EN ISO 17892-2:2015, SR EN ISO 17892-3:2016 Test report

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS

Location Glodeni municipality, CF 50604, 52635, 52833, Mureş county Date of reception 18.01.2024

Superior depth of

3.60

Sample

Date of test

05.02.2024

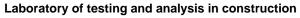
Borehole No. FS01

sample (m)
Inferior depth of

description

gravelly low plasticity clayey SAND

sample (m)


Sample No. 42674

DETERMINATION OF BULK DE	NSITY – IM	MERSION IN FLUID I	METHOD – FL – 095		
Characteristics		Specimen no. 1	Specimen no. 2	Specimen no. 3	
Characteristics	unit	1	2	3	
Mass of the soil specimen (m ₀)	[g]	40.920	53.520	33.210	
Mass of the specimen with coating wax (m ₁)	[g]	43.070	56.020	34.870	
Mass of the immersed specimen (m ₂)	[g]	20.900	27.490	17.100	
Formula $V_1 = rac{m_1 - m_2}{ ho_{fluid}}, ho_{fluid} =$	0,998g/cm ³	$V_2 = \frac{m_1 - m_0}{\rho_{wax}}$	$ ho_{specimen}$ =	$=\frac{m_0}{V_1-V_2}$	
Volume of the immersed specimen (V ₁)	[cm ³]	22.21	28.59	17.81	
Volume of the coating wax (V ₂)	[cm ³]	2.34	2.72	1.80	
Bulk density (ρ _i)	[g/cm ³]	2.06	2.07	2.08	
Admissibility ((ρ_i - ρ_{i_min}) / ρ_i < 1%)	[%]	0 – ACCEPTED	0.49 – ACCEPTED	0.81 – ACCEPTED	
Average result - Bulk Density (ρ)	[g/cm ³]	2.07			
Average result - Bulk unit weight (γ)	[kN/m ³]	20.28			
DETERMINATION OF PARTICLE	DENSITY – I	FLUID PYCNOMETER	R METHOD – FL – 099		
Characteristics	unit	Specimen no.	1 Spec	imen no. 2	
Characteristics	unit	1		2	
Pycnometer no.	[-]	-		-	
Mass of the oven dried test specimen (m ₄)	[g]	1		-	
Mass of the pycnometer + specimen + control fluid (m ₃)	[g]	-		-	
Mass of the dry pycnometer (m ₀)	[g]	-		-	
Mass of the pycnometer + control fluid (m ₁)	[g]	-		-	
Mass of the pycnometer + dry specimen (m ₂)	[g]	-		-	
Formula $ ho_s = \frac{1}{(n-1)^n}$	$m_4 \over n_1 - m_0) - (m_3 -$	$\frac{m_4}{p_1-(m_3-m_2)}*\rho_L$ $\rho_{L(20^{\circ}c)}=0.99823 \text{ g/cm}^3$			
Soil particle density (ρ _s)	[g/cm ³]	-		-	
Soil particle unit weight (γ _s)	[kN/m ³]	-		-	
Admissibility (ρ_{s2} -min(ρ_{s1} , ρ_{s2}) < 0.03 g/cm ³)	[g/cm ³]	-		-	
Average result - Soil particle density (ρ _{s-final})	[g/cm ³]		-		
Average result - Soil particle unit weight (γ _{s - final})	[kN/m³]		-		

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laboratory

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS

Date of Glodeni municipality, CF 50604, 52635, 52833, Mureș county 18.01.2024 Location reception

Superior depth of

5.50

Date of test 05.02.2024

Borehole No. FS01

sample (m) Inferior depth of sample

Sample description

sandy silty GRAVEL

(m)

7.00

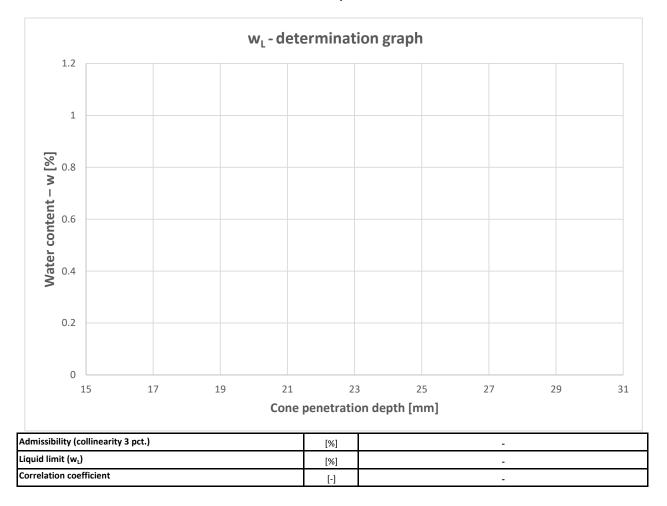
42675 Sample No.

DETERMINATIO	ON OF WATER	CONTENT - FL	. – 093		
Characteristics	unit	Specimen n	o. 1 Spe	ecimen no. 2	Specimen no. 3
Characteristics	unit	1		2	3
Container no.	[-]	574		1059	-
Mass of container (m _c)	[g]	36.86		236.58	-
Mass of moist test specimen + container (m _u)	[g]	437.660		2765.740	-
Mass of dried test specimen + container (m _d)	[g]	405.610		2598.540	-
Formula $w = \frac{m_u - m_d}{m_d - m_c} x 100$	<u>-</u>	-			
Water content (w)	[%]	8.69		7.08	-
Admissibility (Max - Min < 2%)	[%]		1.61 – /	ACCEPTED	
Average result	[%]		7	7.89	
DETERMINATION OF PLASTIC L	IMIT – THREA	D ROLLING TES	T METHOD -	FL – 094	
Chavastavistics	unit	Specimen n	o. 1 Spe	ecimen no. 2	Specimen no. 3
Characteristics	unit	1		2	3
Container no.	[-]	-		-	-
Mass of container (m _c)	[g]	-	-		-
Mass of moist test specimen + container (A)	[g]	-	-		-
Mass of dried test specimen + container (B)	[g]	-	-		-
Formula $w_p = \frac{A - B}{B - mC} x 100$					
Plastic limit (w _P)	[%]	-		-	-
Admissibility (Max - Min < 2 %)	[%]			-	
Average result	[%]			-	
DETERMINATION OF LIQUI	D LIMIT – FAL	L CONE TEST N	IETHOD – FL –	094	
Characteristics		Specimen no. 1	Specimen no. 2	Specimen no. 3	Specimen no. 4
Characteristics	unit	1	2	3	4
Container no.	[-]	-	-	-	-
Mass of the container (C)	[g]	-	-	-	-
Mass of moist test specimen + container (A)	[g]	-	-	-	-
Mass of dried test specimen + container (B)	[g]	-	-	-	-
Cone penetration depth (N)	[mm]	-	-	-	-
Water content (w)	[%]				

Laboratory evaluator

eng. geol. Gáll Hunor

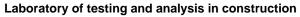
Head of laboratory eng. geol. Nagy Szilárd


The results contained in this test report refer only to the object under test.

 $Reproduction \ or \ modification \ of \ the \ test \ report \ is \ not \ permitted \ without \ the \ written \ approval \ of S.C. \ GeoSearch \ S.R.L.$

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report



DETERMINATION OF FREE SWELL INDEX (12g MATERIAL) - FL- 096							
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3			
		1	2	3			
Graduated cyilinder no.	[-]	-	-	-			
Initial volume of soil specimen (V _i)	[cm ³]	-	-	-			
Final volume of soil specimen (V _f)	[cm ³]	-	-	-			
Formula $U_L = 10x(V_f - V_i)$							
Free swell index (U _L)	[%]	-	-	-			
Admissibility (Max - Min < 10%)	[%]		-	·			
Average result	[%]		-				

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborator

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Date of Glodeni municipality, CF 50604, 52635, 52833, Mureș county 18.01.2024 Location reception

Superior depth of

1.60

low plasticity sandy CLAY

05.02.2024

Borehole No. FS02

sample (m) Inferior depth of sample

Sample description

(m)

2.00

42677 Sample No.

Date of test

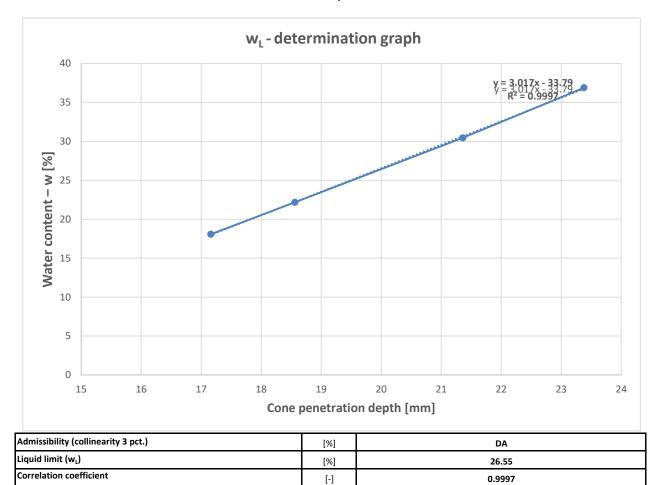
DETERMINA	ATION OF WATER	CONTENT - FL	. – 093		
Characteristics	unit	Specimen no	o. 1 Spe	ecimen no. 2	Specimen no. 3
Characteristics	unit	1		2	3
Container no.	[-]	3014		781	-
Mass of container (m _c)	[g]	36.57		61.53	-
Mass of moist test specimen + container (m _u)	[g]	186.140		848.400	-
Mass of dried test specimen + container (m _d)	[g]	162.040		717.780	-
Formula $w = \frac{m_u - m_d}{m_d - m_c} x 100$					
Water content (w)	[%]	19.21		19.90	-
Admissibility (Max - Min < 2%)	[%]		0.7 – A	CCEPTED	
Average result	[%]		19	9.56	
DETERMINATION OF PLAST	IC LIMIT – THREA	D ROLLING TES	ST METHOD - I	FL – 094	
Characteristics	unit	Specimen no	o. 1 Spe	ecimen no. 2	Specimen no. 3
Characteristics		1	1		3
Container no.	[-]	217		218	219
Mass of container (m _c)	[g]	20.36		21.24	21.75
Mass of moist test specimen + container (A)	[g]	23.020		23.620	23.340
Mass of dried test specimen + container (B)	[g]	22.680		23.310	23.140
Formula $w_p = \frac{A - B}{B - mC} x 100$					
Plastic limit (w _P)	[%]	14.66 14.98 14.39			
Admissibility (Max - Min < 2 %)	[%]		0.59 – 4	ACCEPTED	
Average result	[%]		14	4.67	
DETERMINATION OF LIG	QUID LIMIT – FAL	L CONE TEST M	IETHOD – FL –	094	
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3	Specimen no. 4
Characteristics		1	2	3	4
Container no.	[-]	970	971	972	973
Mass of the container (C)	[g]	12.33	12.51	13.03	12.80
Mass of moist test specimen + container (A)	[g]	34.670	34.280	37.660	37.180
Mass of dried test specimen + container (B)	[g]	31.250	30.330	31.910	30.610
Cone penetration depth (N)	[mm]	17.16	18.56	21.36	23.38
Water content (w)	[%]	18.08	22.17	30.46	36.89

VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING TO 20 mm PENETRATION.

Laboratory evaluator

eng. geol. Gáll Hunor

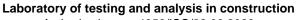
Head of laboratory eng. geol. Nagy Szilárd


The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report



DETERMINATION OF FREE SWELL INDEX (12g MATERIAL) - FL- 096					
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3	
	unit	1	2	3	
Graduated cyilinder no.	[-]	3	4	202	
Initial volume of soil specimen (V _i)	[cm ³]	10	10	10	
Final volume of soil specimen (V _f)	[cm ³]	17	17	17	
Formula $U_L = 10x(V_f - V_i)$					
Free swell index (U _L)	[%]	70	70	70	
Admissibility (Max - Min < 10%)	[%]	0 – ACCEPTED			
Average result	[%]		70		

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborator

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF BULK AND PARTICLE DENSITY OF SOILS according to SR EN ISO 17892-2:2015, SR EN ISO 17892-3:2016 **Test report**

S.C. Glodeni Energy S.R.L. Client Project No. 2819LGS

Date of Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county 18.01.2024 reception

Superior depth of

1.60

2.00

Date of test

Borehole No. FS02

sample (m)

low plasticity sandy CLAY

05.02.2024

Soil particle density (ρ_s)

Soil particle unit weight (y_s)

Admissibility (ρ_{s2} -min(ρ_{s1} , ρ_{s2}) < 0.03 g/cm³)

Average result - Soil particle density (ρ_{s - final})

Average result - Soil particle unit weight (γ_{s - final})

Inferior depth of sample (m)

Sample description

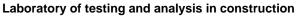
Sample No. 42677

DETERMINATION OF BULK DENSITY – IMMERSION IN FLUID METHOD – FL – 095							
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3			
Characteristics	unit	1	2	3			
Mass of the soil specimen (m ₀)	[g]	27.500	37.740	21.470			
Mass of the specimen with coating wax (m ₁)	[g]	29.480	39.730	22.920			
Mass of the immersed specimen (m ₂)	[g]	13.150	18.110	10.280			
Formula $V_1 = \frac{m_1 - m_2}{ ho_{fluid}}, ho_{fluid} = 0$	$0,998g/cm^3$	$V_2 = \frac{m_1 - m_0}{\rho_{wax}} \qquad \qquad \rho_{specimen} = \frac{m_0}{V_1 - V_2}$					
Volume of the immersed specimen (V ₁)	[cm ³]	16.36	21.66	12.67			
Volume of the coating wax (V₂)	[cm ³]	2.15	2.16	1.58			
Bulk density (ρ _i)	[g/cm ³]	1.94	1.94	1.94			
Admissibility ((ρ_i - $\rho_{i_{min}}$) / ρ_i < 1%)	[%]	0 – ACCEPTED	0.01 – ACCEPTED	0.05 – ACCEPTED			
Average result - Bulk Density (ρ)	[g/cm ³]	1.94					
Average result - Bulk unit weight (γ)	[kN/m ³]	18.99					
DETERMINATION OF PARTICLE	DENSITY -	FLUID PYCNOMETER	METHOD – FL – 099				
Characteristics	unit	Specimen no.	1 Speci	men no. 2			
Characteristics	unit	1		2			
Pycnometer no.	[-]	-		-			
Mass of the oven dried test specimen (m ₄)	[g]	-					
Mass of the pycnometer + specimen + control fluid (m ₃)	[g]	-		-			
Mass of the dry pycnometer (m ₀)	[g]	-					
Mass of the pycnometer + control fluid (m ₁)	[g]	-		-			
Mass of the pycnometer + dry specimen (m ₂)	[g]	-		-			
Formula $ ho_{s}=rac{m_{4}}{(m_{1}-m_{0})-(m_{3}-m_{2})}* ho_{L} ho_{L(20}{}^{o}{}_{c)}=0,99823~g/cm^{3}$							

[g/cm³]

[kN/m³]

[g/cm³]


[g/cm³]

 $[kN/m^3]$

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laboratory

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS

Date of Glodeni municipality, CF 50604, 52635, 52833, Mureș county 18.01.2024 Location reception

Sample

Superior depth of

2.60

Date of test

Borehole No. FS02 sample (m)

low plasticity sandy CLAY

05.02.2024

Inferior depth of sample (m)

description 3.00

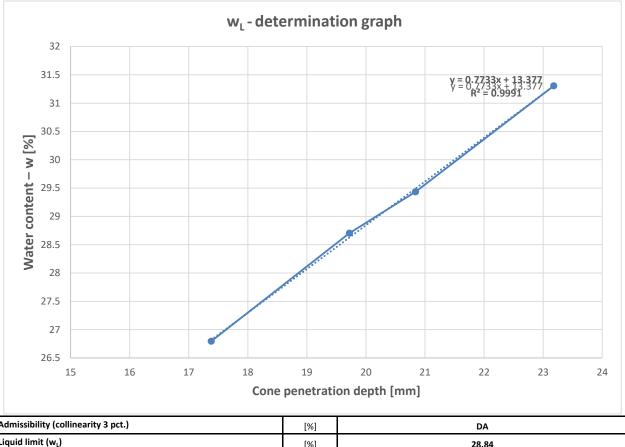
42679 Sample No.

DETERMINATION	N OF WATER	CONTENT - FL	– 093		
Characteristics	unit	Specimen n	o. 1 Spe	ecimen no. 2	Specimen no. 3
Characteristics	unit	1		2	3
Container no.	[-]	400		582	-
Mass of container (m _c)	[g]	36.13		34.63	-
Mass of moist test specimen + container (m _u)	[g]	207.220		882.420	-
Mass of dried test specimen + container (m _d)	[g]	180.300		745.900	-
Formula $w = \frac{m_u - m_d}{m_d - m_c} x 100$	<u> </u>	-	-		
Water content (w)	[%]	18.67		19.19	-
Admissibility (Max - Min < 2%)	[%]		0.52 – /	ACCEPTED	
Average result	[%]		1	8.93	
DETERMINATION OF PLASTIC L	IMIT – THREA	D ROLLING TES	T METHOD -	FL – 094	
Characteristics	unit	Specimen n	o. 1 Spe	ecimen no. 2	Specimen no. 3
Characteristics	unit	1		2	3
Container no.	[-]	211		212	213
Mass of container (m _c)	[g]	22.31		22.78	22.42
Mass of moist test specimen + container (A)	[g]	25.000		25.320	24.690
Mass of dried test specimen + container (B)	[g]	24.700		25.030	24.430
Formula $w_p = \frac{A - B}{B - mC} x 100$					
Plastic limit (w _P)	[%]	12.55 12.89 12.94			
Admissibility (Max - Min < 2 %)	[%]	0.38 – ACCEPTED			
Average result	[%]		1	2.79	
DETERMINATION OF LIQUI	D LIMIT – FAL	L CONE TEST IV	IETHOD – FL –	094	
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3	Specimen no. 4
Characteristics	unit	1	2	3	4
Container no.	[-]	942	943	944	945
Mass of the container (C)	[g]	11.63	11.98	11.72	11.79
Mass of moist test specimen + container (A)	[g]	32.830	32.830	31.640	32.510
Mass of dried test specimen + container (B)	[g]	28.350	28.180	27.110	27.570
Cone penetration depth (N)	[mm]	17.38	19.72	20.84	23.18
Water content (w)	[%]	26.79	28.70	29.43	31.31
BEST STRAIGHT-LINE FIT METHOD – THE MEASURED WATER CONT VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING			ESPONDING CON	PENETREATIONS	AS ABSCISSA. TH

Laboratory evaluator

eng. geol. Gáll Hunor

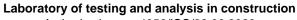
Head of laboratory eng. geol. Nagy Szilárd


The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report


Admissibility (collinearity 3 pct.)	[%]	DA
Liquid limit (w _L)	[%]	28.84
Correlation coefficient	[-]	0.9991

DETERMINATION OF FREE SWELL INDEX (12g MATERIAL) - FL- 096					
Characteristics	unit -	Specimen no. 1	Specimen no. 2	Specimen no. 3	
end-deter issues		1	2	3	
Graduated cyilinder no.	[-]	-	-	-	
Initial volume of soil specimen (V _i)	[cm ³]	-	-	-	
Final volume of soil specimen (V _f)	[cm ³]	-	-	-	
Formula $U_L = 10x(V_f - V_i)$					
Free swell index (U _L)	[%]	-	-	-	
Admissibility (Max - Min < 10%)	[%]		-		
Average result	[%]		-		

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborator

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF BULK AND PARTICLE DENSITY OF SOILS according to SR EN ISO 17892-2:2015, SR EN ISO 17892-3:2016 **Test report**

S.C. Glodeni Energy S.R.L. Client Project No. 2819LGS

Date of Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county 18.01.2024 reception

Superior depth of

2.60

Date of test

05.02.2024

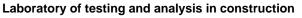
Borehole No. FS02

sample (m)

Sample description

low plasticity sandy CLAY

Inferior depth of sample (m)


3.00 Sample No. 42679

Characteristics	unit	Specimen no. 1	Specimen no 2		
Characteristics	unit	•	Specimen no. 2	Specimen no. 3	
		1	2	3	
Mass of the soil specimen (m ₀)	[g]	38.520	38.380	31.530	
Mass of the specimen with coating wax (m ₁)	[g]	40.480	39.980	33.020	
Mass of the immersed specimen (m ₂)	[g]	18.470	18.610	15.110	
Formula $V_1 = rac{m_1 - m_2}{ ho_{fluid}}, ho_{fluid} =$	$0,998g/cm^3$	$V_2 = \frac{m_1 - m_0}{\rho_{wax}}$	ρ _{specimen}	$=\frac{m_0}{V_1-V_2}$	
Volume of the immersed specimen (V ₁)	[cm ³]	22.05	21.41	17.95	
Volume of the coating wax (V ₂)	[cm ³]	2.13	1.74	1.62	
Bulk density (ρ _i)	[g/cm ³]	1.93	1.95	1.93	
Admissibility ((ρ_i - ρ_{i_min}) / ρ_i < 1%)	[%]	0.11 – ACCEPTED	1 – ACCEPTED	0 – ACCEPTED	
Average result - Bulk Density (ρ)	[g/cm ³]	1.94			
Average result - Bulk unit weight (γ)	[kN/m ³]		19.02		
DETERMINATION OF PARTICL	E DENSITY –	FLUID PYCNOMETER	METHOD – FL – 099		
Characteristics	unit	Specimen no.	1 Spe	cimen no. 2	
	uc	1		2	
Pycnometer no.	[-]	-		-	
Mass of the oven dried test specimen (m ₄)	[g]	-		-	
Mass of the pycnometer + specimen + control fluid (m ₃)	[g]	-	-		
Mass of the dry pycnometer (m ₀)	[g]	-		-	
Mass of the pycnometer + control fluid (m ₁)	[g]	-		-	
Mass of the pycnometer + dry specimen (m ₂)	[g]	1		-	
Formula $ ho_{s}=rac{1}{2}$	$m_4 \over m_1 - m_0) - (m_3 -$	${m_2)}*\rho_L$ ρ	_{L (20} ° _{C)} = 0,99823 g/cm³		
Soil particle density (ρ _s)	[g/cm ³]	-		-	
Soil particle unit weight (γ _s)	[kN/m ³]	-		-	
Admissibility (ρ_{s2} -min(ρ_{s1} , ρ_{s2}) < 0.03 g/cm ³)	[g/cm ³]	-		-	
Average result - Soil particle density ($ ho_{s-final}$)	[g/cm ³]		-		
Average result - Soil particle unit weight (γ _{s - final})	[kN/m ³]		-		

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laboratory

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

05.02.2024

Date of test

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

S.C. Glodeni Energy S.R.L. Client Project No. 2819LGS

Date of Glodeni municipality, CF 50604, 52635, 52833, Mureș county 18.01.2024 Location

reception Superior depth of

sample (m) Sample sandy GRAVEL Borehole No.

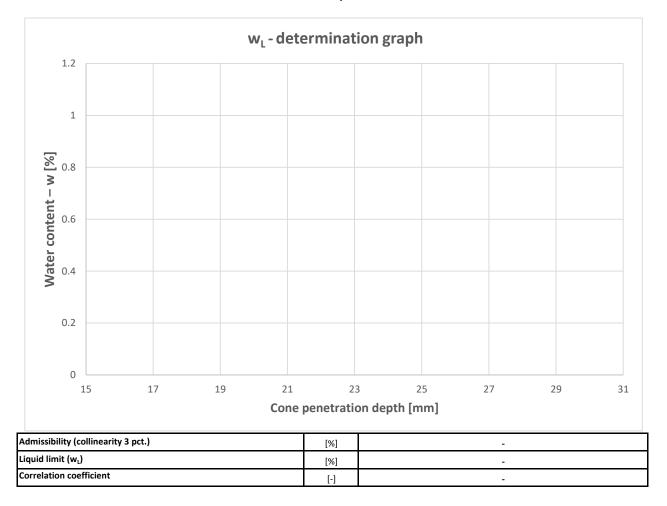
(m)

description Inferior depth of sample 8.00 Sample No. 42682

DETERMINATION OF WATER CONTENT - FL - 093 Specimen no. 3 Specimen no. 1 Specimen no. 2 Characteristics unit Container no. [-] 598 2022 Mass of container (m_c) 34.02 782.14 [g] Mass of moist test specimen + container (m_u) [g] 737.040 4119.620 Mass of dried test specimen + container (m_d) [g] 650.220 3747.950 Formula Water content (w) [%] 14.09 12.53 Admissibility (Max - Min < 2%) [%] 1.56 - ACCEPTED Average result [%] DETERMINATION OF PLASTIC LIMIT - THREAD ROLLING TEST METHOD - FL - 094 Specimen no. 1 Specimen no. 2 Specimen no. 3 Characteristics unit 2 Container no. [-] Mass of container (m_c) [g] Mass of moist test specimen + container (A) [g] Mass of dried test specimen + container (B) [g] $w_p = \frac{A - B}{B - mC} x \mathbf{100}$ Formula Plastic limit (w_P) [%] Admissibility (Max - Min < 2%) [%] Average result [%] DETERMINATION OF LIQUID LIMIT - FALL CONE TEST METHOD - FL - 094 Specimen no. 1 Specimen no. 2 Specimen no. 3 Specimen no. 4 Characteristics unit 1 2 3 4 Container no. [-]Mass of the container (C) [g] Mass of moist test specimen + container (A) [g] Mass of dried test specimen + container (B) [g] Cone penetration depth (N) [mm] Water content (w) [%] BEST STRAIGHT-LINE FIT METHOD - THE MEASURED WATER CONTENTS IN ORDINATE AND THE CORRESPONDING CONE PENETREATIONS AS ABSCISSA. THE

VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING TO 20 mm PENETRATION.

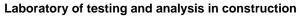
Laboratory evaluator


eng. geol. Gáll Hunor

Head of laboratory

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report



DETERMINATION OF FREE SWELL INDEX (12g MATERIAL) - FL- 096							
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3			
		1	2	3			
Graduated cyilinder no.	[-]	-	-	-			
Initial volume of soil specimen (V _i)	[cm ³]	-	-	-			
Final volume of soil specimen (V _f)	[cm ³]	-	-	-			
Formula $U_L = 10x(V_f - V_i)$							
Free swell index (U _L)	[%]	-	-	-			
Admissibility (Max - Min < 10%)	[%]		-	·			
Average result	[%]		-				

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborator

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590

E-mail: office@geosearch.ro

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Date of Glodeni municipality, CF 50604, 52635, 52833, Mureș county Location 18.01.2024 reception Superior depth of 1.00 Date of test 05.02.2024 sample (m) Sample Borehole No. FS03 low plasticity sandy CLAY

Inferior depth of sample description 1.40 42685 Sample No. (m)

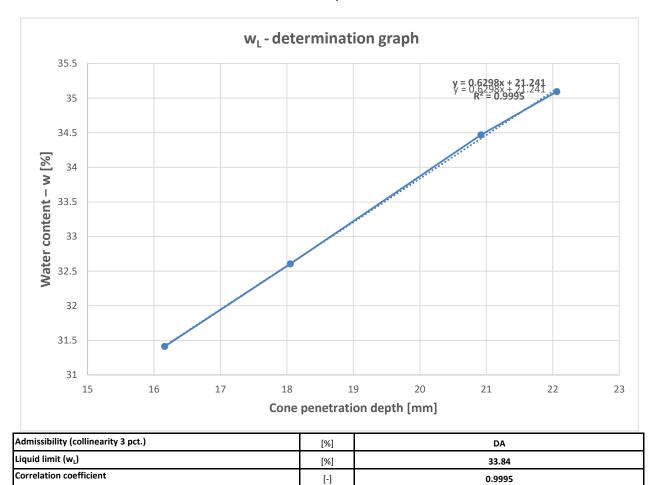
DETERMIN	IATION OF WATER	CONTENT - FL	. – 093		
Characteristics	unit	Specimen n	o. 1 Spe	cimen no. 2	Specimen no. 3
Characteristics	unit	1		2	3
Container no.	[-]	412		597	-
Mass of container (m _c)	[g]	34.55		38.70	-
Mass of moist test specimen + container (m _u)	[g]	177.460		800.400	-
Mass of dried test specimen + container (m _d)	[g]	152.900		670.380	-
Formula $w = \frac{m_u - m_d}{m_d - m_c} x 100$		-	<u>-</u>		
Water content (w)	[%]	20.75		20.58	-
Admissibility (Max - Min < 2%)	[%]		0.17 – 4	ACCEPTED	
Average result	[%]		20	0.67	
DETERMINATION OF PLAS	TIC LIMIT – THREA	D ROLLING TES	T METHOD -	FL – 094	
Characteristics	unit	Specimen n	Specimen no. 1 Spe		Specimen no. 3
Characteristics	unit	1		2	3
Container no.	[-]	196		197	198
Mass of container (m _c)	[g]	23.26		22.16	26.84
Mass of moist test specimen + container (A)	[g]	27.880		25.420	29.340
Mass of dried test specimen + container (B)	[g]	27.300		25.020	29.050
Formula $w_p = \frac{A-B}{B-mC} x 100$					
Plastic limit (w _P)	[%]	14.36 13.99 13.12			
Admissibility (Max - Min < 2 %)	[%]		1.23 – /	ACCEPTED	
Average result	[%]		13	3.82	
DETERMINATION OF L	IQUID LIMIT – FAL	L CONE TEST IV	IETHOD – FL –	094	
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3	Specimen no. 4
Characteristics	unit	1	2	3	4
Container no.	[-]	985	986	987	988
Mass of the container (C)	[g]	13.03	12.52	12.95	12.66
Mass of moist test specimen + container (A)	[g]	32.400	30.700	34.680	33.640
Mass of dried test specimen + container (B)	[g]	27.770	26.230	29.110	28.190
Cone penetration depth (N)	[mm]	16.16	18.05	20.92	22.06
Water content (w)	[%]	31.41	32.60	34.47	35.09

VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING TO 20 mm PENETRATION.

Laboratory evaluator

eng. geol. Gáll Hunor

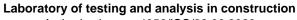
Head of laboratory eng. geol. Nagy Szilárd


The results contained in this test report refer only to the object under test.

 $Reproduction \ or \ modification \ of \ the \ test \ report \ is \ not \ permitted \ without \ the \ written \ approval \ of S.C. \ GeoSearch \ S.R.L.$

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report



DETERMINATION OF FREE SWELL INDEX (12g MATERIAL) - FL- 096					
Characteristics	unit -	Specimen no. 1	Specimen no. 2	Specimen no. 3	
Characteristics		1	2	3	
Graduated cyilinder no.	[-]	5	6	203	
Initial volume of soil specimen (V _i)	[cm ³]	10	10	10	
Final volume of soil specimen (V _f)	[cm ³]	17	17	17	
Formula $U_L = 10x(V_f - V_i)$				•	
Free swell index (U _L)	[%]	70	70	70	
Admissibility (Max - Min < 10%)	[%]	0 – ACCEPTED			
Average result	[%]		70		

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborator

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF BULK AND PARTICLE DENSITY OF SOILS according to SR EN ISO 17892-2:2015, SR EN ISO 17892-3:2016 **Test report**

S.C. Glodeni Energy S.R.L. Client Project No. 2819LGS

Date of Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county 18.01.2024 reception

Superior depth of

sample (m)

1.00

1.40

Date of test

sample (m)

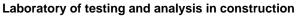
low plasticity sandy CLAY

05.02.2024

Borehole No. FS03

Inferior depth of

Sample description


Sample No. 42685

DETERMINATION OF BULK DENSITY – IMMERSION IN FLUID METHOD – FL – 095					
Characteristics	it	Specimen no. 1	Specimen no. 2	Specimen no. 3	
Characteristics	unit	1	2	3	
Mass of the soil specimen (m ₀)	[g]	40.810	37.810	35.260	
Mass of the specimen with coating wax (m ₁)	[g]	43.010	39.570	39.960	
Mass of the immersed specimen (m ₂)	[g]	19.680	18.220	16.630	
Formula $V_1 = rac{m_1 - m_2}{ ho_{fluid}}$, $ ho_{fluid}$	$uid = 0,998g/cm^3$	$V_2 = \frac{m_1 - m_0}{\rho_{wax}}$	$ ho_{specimen} =$	$=\frac{m_0}{V_1-V_2}$	
Volume of the immersed specimen (V ₁)	[cm ³]	23.38	21.39	23.38	
Volume of the coating wax (V ₂)	[cm ³]	2.39	1.91	5.11	
Bulk density (ρ _i)	[g/cm ³]	1.94	1.94	1.93	
Admissibility ((ρ _i -ρ _{i_min}) / ρ _i < 1%)	[%]	0.75 – ACCEPTED	0.56 – ACCEPTED	0 – ACCEPTED	
Average result - Bulk Density (ρ)	[g/cm ³]	1.94			
Average result - Bulk unit weight (γ)	[kN/m ³]	19.02			
DETERMINATION OF PARTI	ICLE DENSITY – I	LUID PYCNOMETER	METHOD – FL – 099		
Characteristics	unit	Specimen no.	1 Speci	men no. 2	
Characteristics	unit	1		2	
Pycnometer no.	[-]	-		-	
Mass of the oven dried test specimen (m ₄)	[g]	-		-	
Mass of the pycnometer + specimen + control fluid (m ₃)	[g]	-		-	
Mass of the dry pycnometer (m ₀)	[g]	-		-	
Mass of the pycnometer + control fluid (m ₁)	[g]	-		-	
Mass of the pycnometer + dry specimen (m ₂)	[g]	-		-	
,, ,, ,,	$= \frac{m_4}{(m_1 - m_0) - (m_3 - m_0)}$	$\frac{1}{m_2} * \rho_L$ ρ	L (20°C) = 0,99823 g/cm³	-	
,, ,, ,,		$\frac{1}{m_2} * \rho_L \qquad \rho$	_{L (20°C)} = 0,99823 g/cm³	-	
Formula $ ho_s$ =	$= \frac{m_4}{(m_1 - m_0) - (m_3 - m_0)}$		_{L (20°C)} = 0,99823 g/cm³	-	
Formula $oldsymbol{ ho}_s$ = Soil particle density (ho_s)	$= \frac{m_4}{(m_1 - m_0) - (m_3 - m_0)}$ [g/cm ³]		_{L (20°C)} = 0,99823 g/cm³	-	
Soil particle density ($ ho_s$) Soil particle unit weight (γ_s)	$= \frac{m_4}{(m_1 - m_0) - (m_3 - m_0)}$ [g/cm ³] [kN/m ³]		_{L (20°C)} = 0,99823 g/cm ³	-	

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laboratory

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

Client S.C. Glodeni Energy S.R.L. Project No. 2819LGS Date of Glodeni municipality, CF 50604, 52635, 52833, Mureș county 18.01.2024 Location reception Superior depth of 4.30 Date of test 05.02.2024

sample (m) Sample Borehole No. FS03 sandy silty GRAVEL description Inferior depth of sample

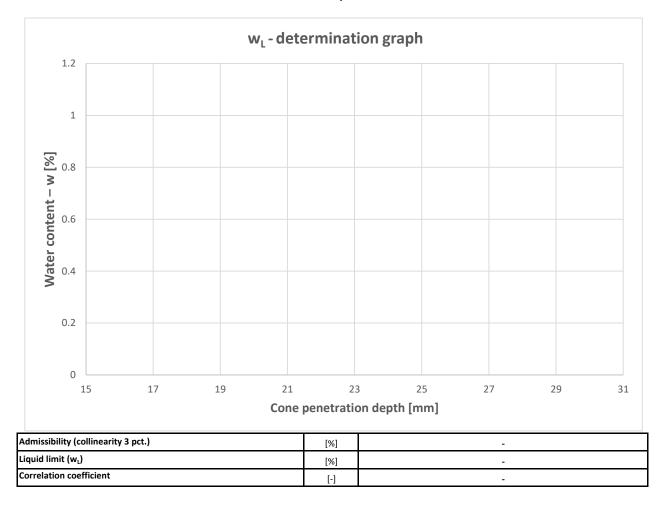
6.00 42689 Sample No. (m)

DETERMI	NATION OF WATER	CONTENT - FL	. – 093		
Characteristics	unit	Specimen n	o. 1 Spe	cimen no. 2	Specimen no. 3
Character istics	unit	1		2	3
Container no.	[-]	577		2004	-
Mass of container (m _c)	[g]	34.91		710.80	-
Mass of moist test specimen + container (m _u)	[g]	590.950		3345.520	-
Mass of dried test specimen + container (m _d)	[g]	535.990	:	3117.600	-
Formula $w = \frac{m_u - m_d}{m_d - m_c} x 100$	-	-	-		-
Water content (w)	[%]	10.97		9.47	-
Admissibility (Max - Min < 2%)	[%]		1.5 – A	CCEPTED	
Average result	[%]		10).22	
DETERMINATION OF PLAS	STIC LIMIT – THREA	D ROLLING TES	ST METHOD – I	FL – 094	
Characteristics		Specimen no. 1 Specimen 1		cimen no. 2	Specimen no. 3
Characteristics	unit			2	3
Container no.	[-]	-		-	-
Mass of container (m _c)	[g]	-		-	-
Mass of moist test specimen + container (A)	[g]	-		-	-
Mass of dried test specimen + container (B)	[g]	-		-	-
Formula $w_p = \frac{A - B}{B - mC} x 100$					
Plastic limit (w _P)	[%]	-		-	-
Admissibility (Max - Min < 2 %)	[%]		•	-	
Average result	[%]			-	
DETERMINATION OF	LIQUID LIMIT – FAL	L CONE TEST N	IETHOD – FL –	094	
		Specimen no. 1	Specimen no. 2	Specimen no. 3	Specimen no. 4
Characteristics	unit	1	2	3	4
Container no.	[-]	-	-	-	-
Mass of the container (C)	[g]	-	-	-	-
Mass of moist test specimen + container (A)	[g]	-	-	-	-
Mass of dried test specimen + container (B)	[g]	-	-	-	-
Cone penetration depth (N)	[mm]	-	-	-	-
Water content (w)	[%]	-	_	-	_

VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING TO 20 mm PENETRATION.

Laboratory evaluator

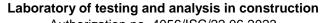
eng. geol. Gáll Hunor


Head of laboratory eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test. $Reproduction \ or \ modification \ of \ the \ test \ report \ is \ not \ permitted \ without \ the \ written \ approval \ of S.C. \ GeoSearch \ S.R.L.$ This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report



DETERMINATION OF FREE SWELL INDEX (12g MATERIAL) - FL- 096					
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3	
Characteristics	unit	1	2	3	
Graduated cyilinder no.	[-]	-	-	-	
Initial volume of soil specimen (V _i)	[cm ³]	-	-	-	
Final volume of soil specimen (V _f)	[cm ³]	-	-	-	
Formula $U_L = 10x(V_f - V_i)$					
Free swell index (U _L)	[%]	-	-	-	
Admissibility (Max - Min < 10%)	[%]		-	·	
Average result	[%]		-		

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborator

Borehole No.

FS04

Mass of dried test specimen + container (B)

Admissibility (Max - Min < 2 %)

(m)

Authorization no. 4056/ISC/22.06.2023

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

47589

24.540

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

Client S.C. GLODENI ENERGY S.R.L. Project No. 31401GS

Date of Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county 24-Mar-2025 reception

Superior depth of Date of test 24-Mar-2025 1.30 sample (m) Sample

low plasticity sandy CLAY description Inferior depth of sample 1.50 Sample No.

DETERMINATION OF WATER CONTENT - no. 47589-RU/03.31.2025 Specimen no. 1 Specimen no. 2 Specimen no. 3 Characteristics unit 3 Container no. [-] 408 812 Mass of container (m_c) [g] 37.87 50.49 Mass of moist test specimen + container (m,) 186.760 937.920 [g] Mass of dried test specimen + container (m_d) 167.190 825.960 [g] Formula

Water content (w) [%] 15.13 14.44 Admissibility (Max - Min < 2%) [%] 0.7 - ACCEPTED Average result [%] 14.79

DETERMINATION OF PLASTIC LIMIT - THREAD ROLLING TEST METHOD - no. 47589-RWP/03.31.2025 Specimen no. 1 Specimen no. 2 Specimen no. 3 Characteristics unit 1 Container no. [-] 191 192 195 Mass of container (m_c) [g] 22.00 21.19 23.33 Mass of moist test specimen + container (A) 24.880 23.620 26.550 [g]

23.350

Formula $w_p = \frac{A - B}{B - mC} x 100$ Plastic limit (w_p) [%] 12.50 12.20 13.39

[g]

[%]

Average result [%] 12.69

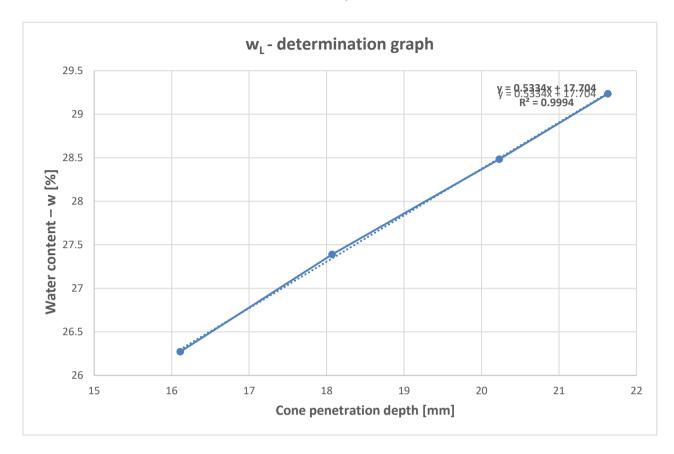
DETERMINATION OF LIQUID LIMIT - FALL CONE TEST METHOD - no. 47589-RWL/03.31.2025 Specimen no. 1 Specimen no. 2 Specimen no. 3 Specimen no. 4 Characteristics unit Container no. [-] 961 963 966 969 Mass of the container (C) [g] 12.01 11.61 11.64 13.05 Mass of moist test specimen + container (A) [g] 28.400 28.680 30.360 33.650 Mass of dried test specimen + container (B) 25.010 26.210 28.990 24.990 [g] Cone penetration depth (N) 16.11 18.07 20.23 [mm] 21.63 Water content (w) [%] 26.27 27.39 28.48 29.23

BEST STRAIGHT-LINE FIT METHOD - THE MEASURED WATER CONTENTS IN ORDINATE AND THE CORRESPONDING CONE PENETREATIONS AS ABSCISSA. THE

VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING TO 20 mm PENETRATION.

Laboratory evaluator eng. geol. Gáll Hunor

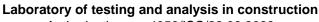
Head of laborator eng. geol. Nagy Szilára


26.200

1.19 - ACCEPTED

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report


Admissibility (collinearity 3 pct.)	[%]	YES
Liquid limit (w _L)	[%]	28.37
Correlation coefficient	[-]	0.9994

DETERMINATION OF FREE SWELL INDEX (12g MATERIAL) - no. 47589-RUL/03.31.2025					
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3	
Characteristics	unit	1	2	3	
Graduated cyilinder no.	[–]	5	6	203	
Initial volume of soil specimen (V _i)	[cm ³]	10	10	10	
Final volume of soil specimen (V _f)	[cm ³]	16	16	16	
Formula $U_L = 10x(V_f - V_i)$					
Free swell index (U _L)	[%]	60	60	60	
Admissibility (Max - Min < 10%)	[%]	0 – ACCEPTED			
Average result	[%]	60			

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborator

str. Principală, nr. 49 Rădaia 407059, jud. Cluj

Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF BULK AND PARTICLE DENSITY OF SOILS according to SR EN ISO 17892-2:2015, SR EN ISO 17892-3:2016 **Test report**

S.C. GLODENI ENERGY S.R.L. Client Project No. 3140LGS

Date of Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county 24-Mar-2025 reception

Superior depth of

1.30 Date of test 24-Mar-2025 sample (m) Sample Borehole No. FS04 low plasticity sandy CLAY

description Inferior depth of sample 1.50 Sample No. 47589 (m)

DETERMINATION OF BULK DENSITY – II	MMERSION	IN FLUID METHOD -	no. 47589-RDS/03.	31.2025
Chausatautata		Specimen no. 1	Specimen no. 2	Specimen no. 3
Characteristics	unit	1	2	3
Mass of the soil specimen (m ₀)	[g]	19.940	24.380	21.520
Mass of the specimen with coating wax (m ₁)	[g]	21.150	25.870	23.040
Mass of the immersed specimen (m₂)	[g]	9.870	12.020	10.670
Formula $V_1 = \frac{m_1 - m_2}{ ho_{water}}$, $ ho_{water} = 0.998 g$	ı/cm³	$V_2 = \frac{m_1 - m_0}{\rho_{wax}}$	$ ho_{sample}$	$=\frac{m_0}{V_1-V_2}$
Volume of the immersed specimen (V ₁)	[cm ³]	11.30	13.88	12.39
Volume of the coating wax (V ₂)	[cm ³]	1.32	1.62	1.65
Bulk density (ρ _i)	[g/cm ³]	2.00	1.99	2.00
Admissibility ((ρ_i - ρ_{i_min}) / ρ_i < 1%)	[%]	0.38 – ACCEPTED	0 – ACCEPTED	0.72 – ACCEPTED
Average result - Bulk Density (ρ)	[g/cm ³]	2.00		
Average result - Bulk unit weight (γ)	[kN/m ³]	19.58		
DETERMINATION OF PARTICLE DENSITY	FLUID PYC	NOMETER METHOD	- no. 47589-RDP/03	3.31.2025
Characteristics	unit	Specimen no.	1 S	pecimen no. 2
Characteristics	unit	1		2
Pycnometer no.	[-]	22		23
Mass of the oven dried test specimen (m ₄)	[g]	10.02		10.08
Mass of the pycnometer + specimen + control fluid (m ₃)	[g]	118.06		119.77
Mass of the dry pycnometer (m ₀)	[g]	53.37		54.86
Mass of the pycnometer + control fluid (m_1)	[g]	111.74		113.41
Mass of the pycnometer + dry specimen (m ₂)	[g]	63.39		64.94
Formula $ ho_s=rac{1}{(n)}$	$\frac{m_4}{m_1 - m_0) - (m_3 - m_3)}$	$\frac{1}{(m_2)} * \rho_L$ ρ	_{L (20} ° _{C)} = 0,99823 g/cn	1 ³
Soil particle density (ρ_s)	[g/cm ³]	2.703 2.705		
Soil particle unit weight (γ_s)	[kN/m³]	26.51		26.53
Admissibility (ρ_{s2} -min(ρ_{s1} , ρ_{s2}) < 0.03 g/cm ³)	[g/cm ³]	ACCEPTED - Δρ	= 0 ACCE	PTED - Δρ = 0.002
Average result - Soil particle density ($\rho_{s-\text{final}}$)	[g/cm ³]		2.700	
Average result - Soil particle unit weight (γ _{s - final})	[kN/m ³]		26.52	

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborate

Authorization no. 4056/ISC/22.06.2023

str. Principală, nr. 49 Rădaia 407059, jud. Cluj

Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF CARBONATE AND HUMUS CONTENT OF SOILS according to ASTM 4373 - 21, STAS 7107/1 - 76 **Test report**

Client S.C. GLODENI ENERGY S.R.L.

3140LGS Project No.

Location

Glodeni municipality, CF 50604, 52635, 52833, Mureș county

Date of reception

24-Mar-2025

Superior depth of sample

1.30

Sample

Date of test

24-Mar-2025

Borehole No.

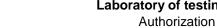
FS04

(m)

description

low plasticity sandy CLAY

Inferior depth of sample 1.50 Sample No. 47589 (m)


DETERMINATION OF CARBONATE CONTENT					
Test report -	no. 47589-RC	/03.31.2025			
Characteristics		Specimen no. 1	Specimen no. 2		
Cital accerisics		1	2		
Calcimeter no.	u.m.	2	-		
Injection pressure (P _i)	[bar]	0.167	-		
Mass of dried specimen (m ₁)	[g]	1.000	-		
Measured CO ₂ pressure (P _c)	[bar]	0.175	-		
Formula $CaCO_3 = \frac{(P_c - Pi) * 10}{(m_1) * P_{max}}$	0				
Carbonate content (calcite equivalent)	[%]	0.43	-		
Admissibility (Max - Min < 2%)	[%]	0 – AI	OMIS		
Average result - Carbonate content (calcite equivalent)	[%]	0.43			

DETERMINATI	ON OF HUN	MUS CONTENT	
Test report - r	10. 47589-R	H/03.31.2025	
Characteristics	unit	Specimen no. 1	Specimen no. 2
Characteristics	unit	1	2
Cylinder no.	[-]	102	302
	•	Colour	Humus content
		Colorless	0 - 1 %
Formula		Yellowish	1 - 2 %
		From yellow to brownish	2 - 5 %
		Brown	> 5 %
Test colour	[-]	incolor	incolor
Humus content	[%]	0	0
Average result - Humus content	[%]	0	

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborato

Laboratory of testing and analysis in construction Authorization no. 4056/ISC/22.06.2023

str. Principală, nr. 49 Rădaia 407059, jud. Cluj

Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

Client S.C. GLODENI ENERGY S.R.L. Project No. 3140LGS

Date of Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county 24-Mar-2025

reception

Superior depth of 2.50 Date of test 24-Mar-2025 sample (m) Sample

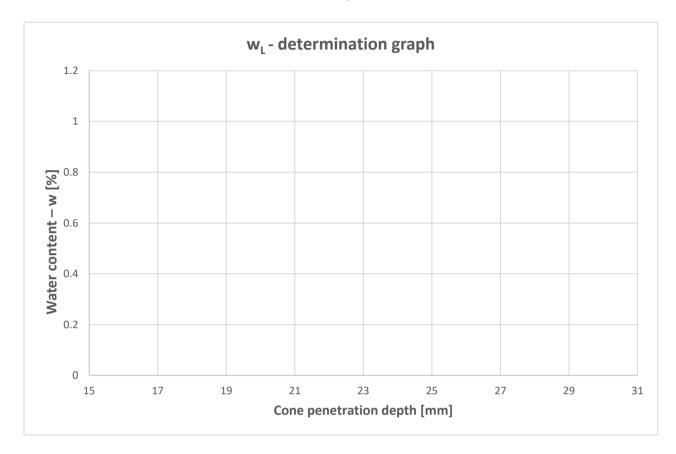
Borehole No. FS04 gravelly silty SAND description Inferior depth of sample

3.20 Sample No. 47597 (m)

DETERMINATION	OF WATER CONTE	NT - no. 47597	-RU/03.31.2)25	
Characteristics	unit	Specimen n	o. 1 S	pecimen no. 2	Specimen no. 3
Cital acteristics	unit	1		2	3
Container no.	[-]	1040		-	-
Mass of container (m _c)	[g]	194.44		-	-
Mass of moist test specimen + container (m _u)	[g]	1851.190)	-	-
Mass of dried test specimen + container (m _d)	[g]	1688.980)	-	-
Formula $w = \frac{m_u - m_d}{m_d - m_c} x100$		-	-		
Water content (w)	[%]	10.85		-	-
Admissibility (Max - Min < 2%)	[%]		0 -	- ACCEPTED	-
Average result	[%]			10.85	
DETERMINATION C	F PLASTIC LIMIT –	THREAD ROLLII	NG TEST MET	HOD	
Chausatauistisa		Specimen no. 1 Specimen 1		. Specimen no. 2	
Characteristics	unit			2	3
Container no.	[-]	-	-		-
Mass of container (m _c)	[g]	-			-
Mass of moist test specimen + container (A)	[g]	-			-
Mass of dried test specimen + container (B)	[g]	-		-	-
Formula $w_p = \frac{A - B}{B - mC} x 100$	•				
Plastic limit (w _P)	[%]	-		-	-
Admissibility (Max - Min < 2 %)	[%]		•	-	•
Average result	[%]			-	
DETERMINATIO	N OF LIQUID LIMIT	- FALL CONE T	TEST METHO	D	
		Specimen no. 1	Specimen no.	2 Specimen no. 3	Specimen no. 4
Characteristics	unit	1	2	3	4
Container no.	[-]	-	-	-	-
Mass of the container (C)	[g]	-	-	-	-
Wass of moist test specimen + container (A)	[g]	-	-	-	-
Mass of dried test specimen + container (B)	[g]	-	-	-	-
Cone penetration depth (N)	[mm]	-	-	-	-
Water content (w)	[%]	_	_	_	_

VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING TO 20 mm PENETRATION.

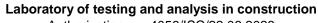
Laboratory evaluator


eng. geol. Gáll Hunor

Head of laborator

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report


Admissibility (collinearity 3 pct.)	[%]	-
Liquid limit (w _L)	[%]	-
Correlation coefficient	[-]	-

DETERMINATION OF FREE SWELL INDEX (12g MATERIAL)					
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3	
characteristics	uiiit	1	2	3	
Graduated cyilinder no.	[-]	-	-	-	
Initial volume of soil specimen (V _i)	[cm ³]	-	-	-	
Final volume of soil specimen (V _f)	[cm ³]	-	-	-	
Formula $U_L = 10x(V_f - V_i)$					
Free swell index (U _L)	[%]	-	-	-	
Admissibility (Max - Min < 10%)	[%]		-		
Average result	[%]		-		

/Laboratory evaluato

eng. geol. Gáll Hunor

Head of laborato

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

Client S.C. GLODENI ENERGY S.R.L. Project No. 3140LGS

Date of Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county 24-Mar-2025 reception

Superior depth of 1.30 Date of test 24-Mar-2025 sample (m) Sample

DETERMINATION OF WATER CONTENT - no. 47591-RU/03.31.2025

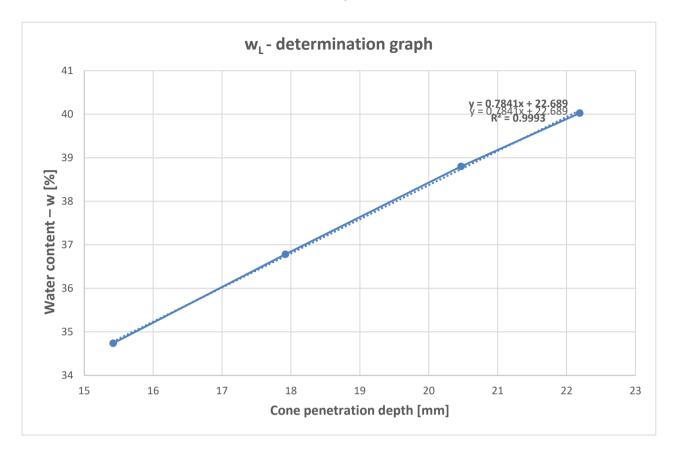
Borehole No. FS05 medium plasticity sandy CLAY description Inferior depth of sample

(m)

1.50 Sample No. 47591

DETERMINATION	T WATER CONTER	11 110. 47.331	110/03:31:202		
Characteristics	unit	Specimen no	o. 1 Spe	ecimen no. 2	Specimen no. 3
Characteristics	unit	1		2	3
Container no.	[-]	381		808	-
Mass of container (m _c)	[g]	34.72		55.96	-
Mass of moist test specimen + container (m _u)	[g]	175.520		874.360	-
Mass of dried test specimen + container (m _d)	[g]	152.300		732.340	-
Formula $w = \frac{m_u - m_d}{m_d - m_c} x 100$					
Water content (w)	[%]	19.75		21.00	-
Admissibility (Max - Min < 2%)	[%]		1.25 –	ACCEPTED	
Average result	[%]		2	20.37	
DETERMINATION OF PLASTIC LIMIT	- THREAD ROLLIN	G TEST METH	OD - no. 47591	-RWP/03.31.2	025
Chavastaviatica		Specimen no	o. 1 Spe	ecimen no. 2	Specimen no. 3
Characteristics	unit	1		2	3
Container no.	[-]	904		908	909
Mass of container (m _c)	[g]	20.81	20.81 1		21.24
Mass of moist test specimen + container (A)	[g]	23.200		22.220	24.760
Mass of dried test specimen + container (B)	[g]	22.880		21.920	24.300
Formula $w_p = \frac{A - B}{B - mC} x 100$					
Plastic limit (w _P)	[%]	15.46		15.31	15.03
Admissibility (Max - Min < 2 %)	[%]		0.43 -	ACCEPTED	•
Average result	[%]		1	15.27	
DETERMINATION OF LIQUID LIN	11T – FALL CONE T	EST METHOD -	no. 47591-RV	VL/03.31.2025	
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3	Specimen no. 4
Characteristics	unit	1	2	3	4
Container no.	[-]	971	972	982	997
Mass of the container (C)	[g]	12.51	13.03	12.93	12.45
Mass of moist test specimen + container (A)	[g]	30.740	30.360	30.530	34.490
Mass of dried test specimen + container (B)	[g]	26.040	25.700	25.610	28.190
Cone penetration depth (N)	[mm]	15.42	17.92	20.47	22.19
Water content (w)	[%]	34.74	36.78	38.80	40.03
BEST STRAIGHT-LINE FIT METHOD – THE MEASURED WATER ON VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPON			ESPONDING CONE	PENETREATIONS A	AS ABSCISSA. THE

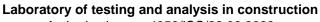
VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING TO 20 mm PENETRATION.


Laboratory evaluator eng. geol. Gáll Hunor

Head of laborator eng. geol. Nagy Szilárd

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report


Admissibility (collinearity 3 pct.)	[%]	YES
Liquid limit (w _L)	[%]	38.37
Correlation coefficient	[-]	0.9993

DETERMINATION OF FREE SWELL INDEX (12g MATERIAL) - no. 47591-RUL/03.31.2025					
Characteristics	unit Specimen no. 1	Specimen no. 2	Specimen no. 3		
Characteristics		1	2	3	
Graduated cyilinder no.	[–]	7	8	204	
Initial volume of soil specimen (V _i)	[cm ³]	10	10	10	
Final volume of soil specimen (V _f)	[cm ³]	18	18	18	
Formula $U_L = 10x(V_f - V_i)$					
Free swell index (U _L)	[%]	80	80	80	
Admissibility (Max - Min < 10%)	[%]	0 – ACCEPTED			
Average result	[%]	80			

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborato

str. Principală, nr. 49 Rădaia 407059, jud. Cluj

Tel.: +40 753 099 590 E-mail: office@geosearch.ro

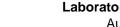
DETERMINATION OF BULK AND PARTICLE DENSITY OF SOILS according to SR EN ISO 17892-2:2015, SR EN ISO 17892-3:2016 **Test report**

S.C. GLODENI ENERGY S.R.L. Client Project No. 3140LGS

Date of Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county 24-Mar-2025 reception

Superior depth of

1.30 Date of test 24-Mar-2025 sample (m) Sample Borehole No. FS05 medium plasticity sandy CLAY


description Inferior depth of sample 1.50 Sample No. 47591 (m)

DETERMINATION OF BULK DENSITY – IMMERSION IN FLUID METHOD - no. 47591-RDS/03.31.2025						
Characteristics	unit	Specimen no. 1	Specime	en no. 2	Specimen no. 3	
Characteristics	unic	1	2	2	3	
Mass of the soil specimen (m ₀)	[g]	21.070	28.5	520	22.190	
Mass of the specimen with coating wax (m ₁)	[g]	22.760	30.2	170	23.570	
Mass of the immersed specimen (m ₂)	[g]	10.350	14.3	140	10.980	
Formula $V_1 = \frac{m_1 - m_2}{ ho_{water}}, ho_{water} = 0.998 g/c$	cm ³	$V_2 = \frac{m_1 - m_0}{\rho_{wax}}$		$\rho_{sample} = \frac{1}{V_1}$	$\frac{m_0}{-V_2}$	
Volume of the immersed specimen (V ₁)	[cm ³]	12.43	16.	.06	12.62	
Volume of the coating wax (V ₂)	[cm ³]	1.84	1.7	79	1.50	
Bulk density (p _i)	[g/cm ³]	1.99	2.0	00	2.00	
Admissibility ((ρ_i - ρ_{i_min}) / ρ_i < 1%)	[%]	0 – ACCEPTED	0.53 – AC	CCEPTED	0.41 – ACCEPTED	
Average result - Bulk Density (ρ)	[g/cm ³]	1.99				
Average result - Bulk unit weight (γ)	[kN/m³]	19.57				
DETERMINATION OF PARTICLE DENSITY –	FLUID PYC	NOMETER METHOD	- no. 47591	-RDP/03.31	.2025	
Characteristics	unit	Specimen no. 1		Specimen no. 2		
enaration sites	unit	1		2		
Pycnometer no.	[-]	24			25	
Mass of the oven dried test specimen (m ₄)	[g]	10.07		10.06		
Mass of the pycnometer + specimen + control fluid (m ₃)	[g]	117.56		1:	19.25	
Mass of the dry pycnometer (m ₀)	[g]	52.40		5	7.86	
Mass of the pycnometer + control fluid (m ₁)	[g]	111.22		1:	12.92	
Mass of the pycnometer + dry specimen (m ₂)	[g]	62.47		6	57.92	
Formula $ ho_s=rac{}{(m_1)}$	$\frac{m_4}{-m_0}$)- $(m_3$ -	·m ₂) *ρ _L ρ	o _{L (20} ° _{C)} = 0,998	823 g/cm³		
Soil particle density (ρ_s)	[g/cm ³]	2.695		2	2.692	
Soil particle unit weight (γ_s)	[kN/m³]	26.43		2	6.40	
Admissibility (ρ_{s2} -min(ρ_{s1} , ρ_{s2}) < 0.03 g/cm ³)	[g/cm ³]	ACCEPTED - Δρ = 0	0.003	ACCEPT	ED - Δρ = 0	
Average result - Soil particle density (ρ _{s - final})	[g/cm ³]		2.690)		
Average result - Soil particle unit weight (y _{s - final})	[kN/m³]	26.41				

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborate eng. geol. Nagy Szilárd

Authorization no. 4056/ISC/22.06.2023

str. Principală, nr. 49 Rădaia 407059, jud. Cluj

Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF CARBONATE AND HUMUS CONTENT OF SOILS according to ASTM 4373 - 21, STAS 7107/1 - 76 **Test report**

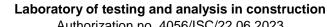
Client S.C. GLODENI ENERGY S.R.L. 3140LGS Project No.

Date of Glodeni municipality, CF 50604, 52635, 52833, Mureș county Location 24-Mar-2025

reception

Superior depth of sample 1.30 Date of test 24-Mar-2025 (m) Sample FS05 Borehole No. medium plasticity sandy CLAY

description Inferior depth of sample 1.50 Sample No. 47591 (m)


DETERMINATION OF CARBONATE CONTENT					
Test rep	ort - no. 47591-RC/	03.31.2025			
Characteristics		Specimen no. 1	Specimen no. 2		
Characteristics		1	2		
Calcimeter no.	u.m.	2	-		
Injection pressure (P _i)	[bar]	0.167	-		
Mass of dried specimen (m ₁)	[g]	1.000	-		
Measured CO ₂ pressure (P _c)	[bar]	0.173	-		
Formula $CaCO_3 = \frac{(P_c - Pi)}{(m_1) * i}$) * 100 P _{max}				
Carbonate content (calcite equivalent)	[%]	0.32	-		
Admissibility (Max - Min < 2%)	[%]	0 – ADMIS			
Average result - Carbonate content (calcite equivalent)	[%]	0.32			

DETERMINATION	DETERMINATION OF HUMUS CONTENT				
Test report - no. 47591-RH/03.31.2025					
Characteristics	unit	Specimen no. 1	Specimen no. 2		
Characteristics	unit	1	2		
Cylinder no.	[-]	103	303		
		Colour	Humus content		
		Colorless	0 - 1 %		
Formula		Yellowish	1 - 2 %		
		From yellow to brownish	2 - 5 %		
		Brown	> 5 %		
Test colour	[-]	incolor	incolor		
Humus content	[%]	0	0		
Average result - Humus content	[%]	0			

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborato

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

Client S.C. GLODENI ENERGY S.R.L. Project No. 3140LGS

Date of Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county 24-Mar-2025

reception

Superior depth of 1.70 Date of test 24-Mar-2025

DETERMINATION OF WATER CONTENT - no. 47594-RU/03.31.2025

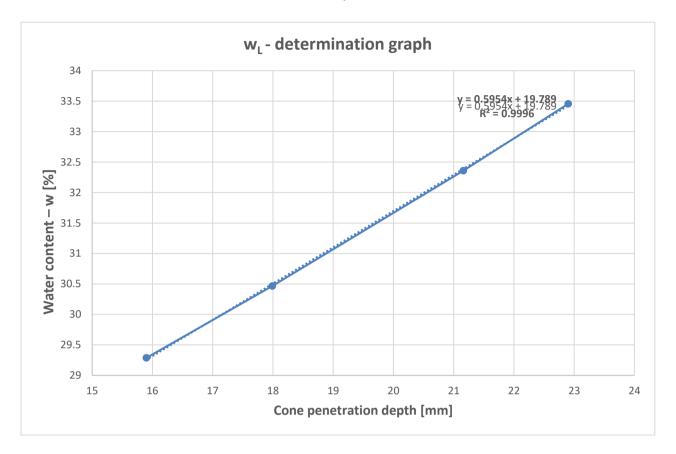
sample (m) Sample Borehole No. FS06 low plasticity sandy CLAY description Inferior depth of sample

(m)

2.00 Sample No. 47594

		Specimen n	Specimen no. 1 Specimen no. 2 Spe			
Characteristics	unit	1		2	3	
Container no.	[-]	385		 789	-	
Mass of container (m _c)	[g]	40.82		80.31	-	
Mass of moist test specimen + container (m _u)	[g]	195.260		925.620	-	
Mass of dried test specimen + container (m _d)	[g]	172.570		797.300	-	
Formula $w = \frac{m_u - m_d}{m_d - m_c} x100$		I	I			
Water content (w)	[%]	17.22		17.90	-	
Admissibility (Max - Min < 2%)	[%]		0.68 -	ACCEPTED		
Average result	[%]			17.56		
DETERMINATION OF PLASTIC LIMIT – THRI	AD ROLLIN	IG TEST METH	OD - no. 4759	4-RWP/03.31.2	025	
		Specimen n	o. 1 Sp	ecimen no. 2	Specimen no. 3	
Characteristics	unit	1	1		3	
Container no.	[-]	202		203	250	
Mass of container (m _c)	[g]	21.73	21.66		20.90	
Mass of moist test specimen + container (A)	[g]	24.220	24.270		23.710	
Mass of dried test specimen + container (B)	[g]	23.930		23.990	23.400	
Formula $w_p = \frac{A - B}{B - mC} x 100$						
Plastic limit (w _P)	[%]	13.18		12.02	12.40	
Admissibility (Max - Min < 2 %)	[%]		1.16 -	ACCEPTED		
Average result	[%]			12.53		
DETERMINATION OF LIQUID LIMIT – FA	ALL CONE T	EST METHOD	no. 47594-RV	VL/03.31.2025		
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3	Specimen no. 4	
Characteristics	unit	1	2	3	4	
Container no.	[-]	1017	1018	1020	1024	
Mass of the container (C)	[g]	11.94	12.21	11.93	12.03	
Mass of moist test specimen + container (A)	[g]	28.450	30.110	30.050	33.770	
Mass of dried test specimen + container (B)	[g]	24.710	25.930	25.620	28.320	
Cone penetration depth (N)	[mm]	15.9	17.99	21.16	22.9	
Water content (w)	[%]	29.29	30.47	32.36	33.46	
BEST STRAIGHT-LINE FIT METHOD – THE MEASURED WATER CONTENT VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING TO			ESPONDING CON	PENETREATIONS A	AS ABSCISSA. THE	

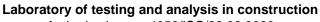
VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING TO 20 mm PENETRATION.


Laboratory evaluator eng. geol. Gáll Hunor

Head of laborator eng. geol. Nagy Szilárd

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report


Admissibility (collinearity 3 pct.)	[%]	YES
Liquid limit (w _L)	[%]	31.7
Correlation coefficient	[-]	0.9996

DETERMINATION OF FREE SWELL INDEX (12g MATERIAL) - no. 47594-RUL/03.31.2025							
Characteristics	Specimen no. 1	Specimen no. 2	Specimen no. 3				
	unit	1	2	3			
Graduated cyilinder no.	[–]	9	10	205			
Initial volume of soil specimen (V _i)	[cm ³]	10	10	10			
Final volume of soil specimen (V _f)	[cm ³]	16	16.5	16.5			
Formula $U_L = 10x(V_f - V_i)$	Formula $U_L = 10x(V_f - V_i)$						
Free swell index (U _L)	[%]	60	65	65			
Admissibility (Max - Min < 10%)	[%]	5 – ACCEPTED					
Average result	[%]	65					

Laboratory evaluato

eng. geol. Gáll Hunor

Head of laborator

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF BULK AND PARTICLE DENSITY OF SOILS according to SR EN ISO 17892-2:2015, SR EN ISO 17892-3:2016 Test report

Client S.C. GLODENI ENERGY S.R.L. Project No. 3140LGS

Location Glodeni municipality, CF 50604, 52635, 52833, Mureş county

Date of
24-Mar-2025

reception

Superior depth of 1.70 Date of test 24-Mar-2025 sample (m) Sample

Borehole No. FS06 Inferior depth of sample description low plasticity sandy CLAY

(m) Sample No. 47594

DETERMINATION OF BULK DENSITY -	- IMMERSION	IN FLUID METHOD -	no. 47594-RDS/03.31	.2025	
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3	
Characteristics	unit	1	2	3	
Mass of the soil specimen (m ₀)	[g]	15.480	19.150	22.200	
Mass of the specimen with coating wax (m ₁)	[g]	16.900	21.160	24.070	
Mass of the immersed specimen (m ₂)	[g]	7.380	9.120	10.710	
Formula $V_1 = \frac{m_1 - m_2}{ ho_{water}}$, $ ho_{water} = 0.99$	$08g/cm^3$	$V_2 = \frac{m_1 - m_0}{\rho_{wax}}$	$ ho_{sample} = \frac{1}{1}$	$\frac{m_0}{V_1-V_2}$	
Volume of the immersed specimen (V ₁)	[cm ³]	9.54	12.06	13.39	
Volume of the coating wax (V ₂)	[cm ³]	1.54	2.18	2.03	
Bulk density (p _i)	[g/cm ³]	1.94	1.94	1.96	
Admissibility ((ρ_i - $\rho_{i_{min}}$) / ρ_i < 1%)	[%]	0 – ACCEPTED	0.12 – ACCEPTED	0.98 – ACCEPTED	
Average result - Bulk Density (ρ)	[g/cm ³]		1.94		
Average result - Bulk unit weight (γ)	[kN/m ³]		19.06		
DETERMINATION OF PARTICLE DENSIT	Y – FLUID PYC	NOMETER METHOD	- no. 47594-RDP/03.3	1.2025	
Characteristics	unit	Specimen no.	1 Spe	cimen no. 2	
Characteristics	unic	1		2	
Pycnometer no.	[-]	28		29	
Mass of the oven dried test specimen (m ₄)	[g]	10.05		10.09	
Mass of the pycnometer + specimen + control fluid (m ₃)	[g]	118.57		116.83	
Mass of the dry pycnometer (m ₀)	[g]	53.86		51.76	
Mass of the pycnometer + control fluid (m ₁)	[g]	112.25		110.48	
Mass of the pycnometer + dry specimen (m ₂)	[g]	63.91		61.85	
Formula $ ho_{ m s}=$	$\frac{m_4}{(m_1 - m_0) - (m_3 - m_0)}$	$\frac{1}{2m_2} * \rho_L$	O _{L (20} ° _{C)} = 0,99823 g/cm³		
Soil particle density (ρ_s)	[g/cm ³]	2.690		2.693	
Soil particle unit weight (γ_s)	[kN/m ³]	26.38		26.41	
Admissibility (ρ_{s2} -min(ρ_{s1} , ρ_{s2}) < 0.03 g/cm ³)	[g/cm ³]	ACCEPTED - Δρ	= 0 ACCEPT	ΈD - Δρ = 0.003	
Average result - Soil particle density (ρ _{s - final})	[g/cm ³]		2.690		
Average result - Soil particle unit weight (γ _{s - final})	[kN/m³]		26.39		

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborator

Authorization no. 4056/ISC/22.06.2023

str. Principală, nr. 49 Rădaia 407059, jud. Cluj

Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF CARBONATE AND HUMUS CONTENT OF SOILS according to ASTM 4373 - 21, STAS 7107/1 - 76 **Test report**

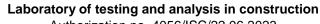
Client S.C. GLODENI ENERGY S.R.L. 3140LGS Project No.

Date of Glodeni municipality, CF 50604, 52635, 52833, Mureș county Location 24-Mar-2025

reception

Superior depth of sample 1.70 Date of test 24-Mar-2025 (m) Sample Borehole No. FS06 low plasticity sandy CLAY

description Inferior depth of sample 2.00 Sample No. 47594 (m)


DETERMINATION OF CARBONATE CONTENT					
Test report - ı	no. 47594-RC	/03.31.2025			
Characteristics		Specimen no. 1	Specimen no. 2		
Characteristics		1	2		
Calcimeter no.	u.m.	2	-		
Injection pressure (P _i)	[bar]	0.167	-		
Mass of dried specimen (m ₁)	[g]	1.000	-		
Measured CO ₂ pressure (P _c)	[bar]	0.179	-		
Formula $CaCO_3 = \frac{(P_c - Pi) * 10}{(m_1) * P_{max}}$	0				
Carbonate content (calcite equivalent)	[%]	0.64	-		
Admissibility (Max - Min < 2%)	[%]	0 – ADMIS			
Average result - Carbonate content (calcite equivalent)	[%]	0.64			

DETERMINATI	DETERMINATION OF HUMUS CONTENT				
Test report - no. 47594-RH/03.31.2025					
Characteristics	unit	Specimen no. 1	Specimen no. 2		
Characteristics	unit	1	2		
Cylinder no.	[-]	104	304		
		Colour	Humus content		
		Colorless	0 - 1 %		
Formula		Yellowish	1 - 2 %		
		From yellow to brownish	2 - 5 %		
		Brown	> 5 %		
Test colour	[-]	incolor	incolor		
Humus content	[%]	0	0		
Average result - Humus content	[%]	0			

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborato

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590

E-mail: office@geosearch.ro

DETERMINATION OF WATER CONTENT, PLASTICITY AND FREE SWELL INDEX OF SOILS according to SR EN ISO 17892-1:2015, SR EN ISO 17892-12:2018, STAS 1913/12 - 88 **Test report**

Client S.C. GLODENI ENERGY S.R.L. Project No. 3140LGS

Date of Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county 24-Mar-2025

reception

Superior depth of 1.30 Date of test 24-Mar-2025

DETERMINATION OF WATER CONTENT - no. 47595-RU/03.31.2025

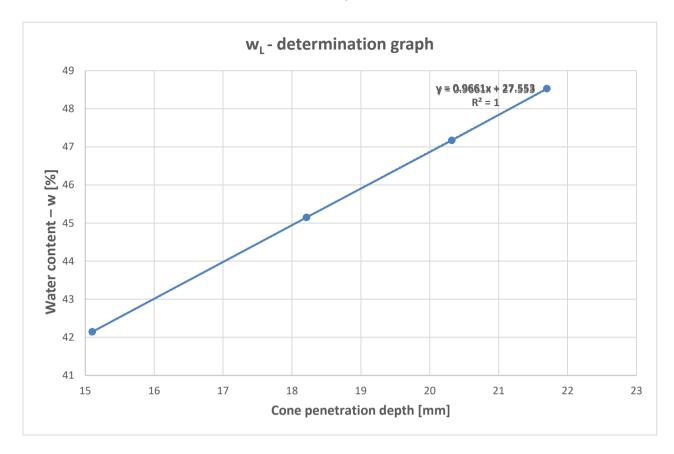
sample (m) Sample Borehole No. FS07 medium plasticity CLAY description Inferior depth of sample

1.50 (m)

Sample No. 47595

unit	Specimen no	o. 1 Spe	1 Specimen no. 2	
unit	1		2	3
[-]	426		805	-
[g]	36.34		61.61	-
[g]	151.680		822.750	-
[g]	128.670		668.220	-
[%]	24.92		25.47	-
[%]		0.55 -	ACCEPTED	
[%]		:	25.20	
READ ROLLIN	IG TEST METH	OD - no. 47595	5-RWP/03.31.2	025
	Specimen no	o. 1 Spe	ecimen no. 2	Specimen no. 3
unit	1		2	3
[-]	833		838	839
[g]	21.25		21.27	21.20
[g]	23.580		24.100	24.230
[g]	23.230	23.660		23.790
	-			
[%]	17.68		18.41	16.99
[%]		1.42 –	ACCEPTED	
[%]		:	17.69	
FALL CONE T	EST METHOD -	no. 47595-RV	VL/03.31.2025	
	Specimen no. 1	Specimen no. 2	Specimen no. 3	Specimen no. 4
unit	1	2	3	4
[-]	3006	3008	3009	3010
[g]	13.19	11.70	11.69	11.66
[g]	27.390	30.700	29.880	35.870
[g]	23.180	23.180 24.790 24		27.960
[mm]	15.1	18.21	20.32	21.7
	-	18.21 20.32		
	[g] [g] [g] [g] [w] [%] [%] IREAD ROLLIN unit [-] [g] [g] [w] [%] FALL CONE T unit [-] [g] [g] [g] [g] [g]	Indicate	Init Init	I

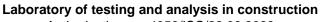
VALUE OF LIQUID LIMIT IS THE WATER CONTENT CORRESPONDING TO 20 mm PENETRATION.


Laboratory evaluator eng. geol. Gáll Hunor

Head of laborator eng. geol. Nagy Szilára

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Test report


Admissibility (collinearity 3 pct.)	[%]	YES
Liquid limit (w _L)	[%]	46.87
Correlation coefficient	[-]	1

DETERMINATION OF FREE SWELL INDEX (12g MATERIAL) - no. 47595-RUL/03.31.2025							
Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3			
character istes	unit	1	2	3			
Graduated cyilinder no.	[–]	11 12 20					
Initial volume of soil specimen (V _i)	[cm ³]	10	10	10			
Final volume of soil specimen (V _f)	[cm ³]	20 20		20			
Formula $U_L = 10x(V_f - V_i)$							
Free swell index (U _L)	[%]	100	100	100			
Admissibility (Max - Min < 10%)	[%]	0 – ACCEPTED					
Average result	[%]	100					

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborator

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590

E-mail: office@geosearch.ro

DETERMINATION OF BULK AND PARTICLE DENSITY OF SOILS according to SR EN ISO 17892-2:2015, SR EN ISO 17892-3:2016 **Test report**

S.C. GLODENI ENERGY S.R.L. Client Project No. 3140LGS

Date of Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county 24-Mar-2025

reception Superior depth of

Date of test 1.30 24-Mar-2025 sample (m) Sample

Borehole No. FS07 medium plasticity CLAY description Inferior depth of sample

1.50 Sample No. 47595 (m)

DETERMINATION OF BULK DENSITY - IMMERSION IN FLUID METHOD - no. 47595-RDS/03.31.2025

Characteristics	unit	Specimen no. 1	Specimen no. 2	Specimen no. 3	
Characteristics	unit	1	2	3	
Mass of the soil specimen (m ₀)	[g]	20.250	20.860	21.680	
Mass of the specimen with coating wax (m ₁)	[g]	22.470	22.750	23.620	
Mass of the immersed specimen (m₂)	[g]	9.500	9.800	10.210	
Formula $V_1 = \frac{m_1 - m_2}{ ho_{water}}$, $ ho_{water} = 0.99$	$8g/cm^3$	$V_2 = \frac{m_1 - m_0}{\rho_{wax}}$	$ ho_{sample} =$	$\frac{m_0}{V_1 - V_2}$	
Volume of the immersed specimen (V ₁)	[cm ³]	13.00	12.98	13.44	
Volume of the coating wax (V ₂)	[cm ³]	2.41	2.05	2.11	
Bulk density (p _i)	[g/cm ³]	1.91	1.91	1.91	
Admissibility ((ρ_i - $\rho_{i_{min}}$) / ρ_i < 1%)	[%]	0.18 – ACCEPTED	0 – ACCEPTED	0.2 – ACCEPTED	
Average result - Bulk Density (ρ)	[g/cm ³]		1.91		
Average result - Bulk unit weight (γ)	[kN/m³]		18.76		
DETERMINATION OF PARTICLE DENSIT	Y – FLUID PYC	NOMETER METHOD	- no. 47595-RDP/03.3	31.2025	
Characteristics	unit	Specimen no.	1 Spe	cimen no. 2	
Characteristics	unit	1		2	
Pycnometer no.	[-]	30		31	
Mass of the oven dried test specimen (m ₄)	[g]	10.05		10.04	
Mass of the pycnometer + specimen + control fluid (m ₃)	[g]	117.46		118.21	
Mass of the dry pycnometer (m ₀)	[g]	53.72		53.00	
Mass of the pycnometer + control fluid (m ₁)	[g]	111.18		111.95	
Mass of the pycnometer + dry specimen (m ₂)	[g]	63.77		63.04	
Formula $ ho_{s}=$	$\frac{m_4}{(m_1 - m_0) - (m_3 - m_0)}$	${m_2}$ * ρ_L ρ	o _{L (20} o _{C)} = 0,99823 g/cm³		
Soil particle density (ρ _s)	[g/cm ³]	2.651		2.651	
Soil particle unit weight (γ _s)	[kN/m ³]	26.09		26.00	
Admissibility (ρ_{s2} -min(ρ_{s1} , ρ_{s2}) < 0.03 g/cm ³)	[g/cm ³]	ACCEPTED - Δρ =	0.01 ACCE	PTED - Δρ = 0	
Average result - Soil particle density (ρ _{s - final})	[g/cm ³]		2.660		
Average result - Soil particle unit weight (γ _{s - final})	[kN/m³]	_	26.05		

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborate eng. geol. Nagy Szilárd

Authorization no. 4056/ISC/22.06.2023

str. Principală, nr. 49 Rădaia 407059, jud. Cluj

Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF CARBONATE AND HUMUS CONTENT OF SOILS according to ASTM 4373 - 21, STAS 7107/1 - 76 **Test report**

Client S.C. GLODENI ENERGY S.R.L.

3140LGS Project No.

Location

Glodeni municipality, CF 50604, 52635, 52833, Mureș county

Date of reception

24-Mar-2025

Superior depth of sample

Inferior depth of sample

(m)

1.30

1.50

Date of test

24-Mar-2025

Borehole No.

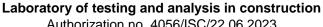
FS07

(m)

Sample description

medium plasticity CLAY

Sample No. 47595


DETERMINATION OF CARBONATE CONTENT							
Test report - r	no. 47595-R	C/03.31.2025					
Characteristics		Specimen no. 1	Specimen no. 2				
Characteristics		1	2				
Calcimeter no.	u.m.	2	-				
Injection pressure (P _i)	[bar]	0.167	-				
Mass of dried specimen (m ₁)	[g]	1.000	-				
Measured CO ₂ pressure (P _c)	[bar]	0.185	-				
Formula $CaCO_3 = \frac{(P_c - Pi) * 100}{(m_{_1}) * P_{max}}$							
Carbonate content (calcite equivalent)	[%]	0.97	-				
Admissibility (Max - Min < 2%)	[%]	0 – A	DMIS				
Average result - Carbonate content (calcite equivalent)	[%]	0.97					

DETERMINATI	ON OF HUN	MUS CONTENT			
Test report - r	no. 47595-R	H/03.31.2025			
Characteristics	unit	Specimen no. 1	Specimen no. 2		
Characteristics	unit	1	2		
Cylinder no.	105	305			
		Colour	Humus content		
		Colorless	0 - 1 %		
Formula		Yellowish	1 - 2 %		
		From yellow to brownish	2 - 5 %		
		Brown	> 5 %		
Test colour	[-]	slab gălbui	slab gălbui		
Humus content	[%]	1	1		
Average result - Humus content	[%]	1			

Laboratory evaluator

eng. geol. Gáll Hunor

Head of laborato

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Classification of soils based on particle size distribution and plasticity

according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018 **Test report**

S.C. GLODENI ENERGY S.R.L. Client

Project No. 2819LGS

Location

Glodeni municipality, CF 50604, 52635, 52833, Mures county

Date of reception 18.01.2024

Borehole No.

FS01

Sample No. *42672*

Superior depth of sample (m)

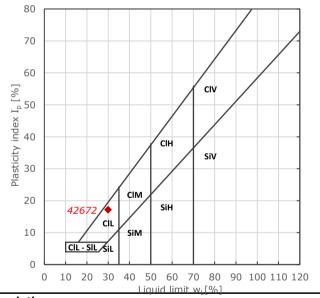
Date of test

Inferior depth of sample (m)

60.42

2.00 2.40

05.02.2024


Dry sample mass for granulometry [g]

Soil group	Subdivision	Symbol	Size [mm]	Quantification [%]
	Large boulders	Lbo	> 630	0.00
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Co	63-200	0.00
	Coarse gravel	CGr	20-63	0.00
	Medium gravel	MGr	6,3-20	0.00
Coarse	Fine gravel	FGr	2-6,3	0.25
Coarse	Coarse sand	Csa	0,63-2	1.12
	Medium sand	Msa	0,2-0,63	20.28
	Fine sand	Fsa	0,063-0,2	21.78
	Coarse silt	Csi	0,02-0,063	12.65
Fine	Medium silt	Msi	0,0063-0,02	7.53
rille	Fine silt	Fsi	0,002-0,0063	5.24
	Clay	Cl	≤ 0,002	31.15

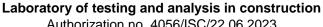
100				9	, o - o		000	~ 0	0	
ss 80				\$						
ğ 70	+		/	/						
ㅎ 60			- B							
50 tal										
g 40		appe								
g 30	9-08	16 °								
20 ents							<u>_</u>			
Percentage of total dry mass [%] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ō	A Si	Si	Sa Sa	Csa	ρ̈́	MGr	D D	ပိ	B ₀
0	\Box				Щ		-			
0	0.007	Q.01 c	0.10 0 Si	0.2	2 ~	5.3	10 8	£9	500 00.	4000 83
	0.0	0.0063	S O Si	ize of fr	s action				7	9
		_					L			

Particle diameters [mm]	\mathbf{d}_{10}	d ₃₀	d ₆₀ 0.08009			
	-	0.00147				
Uniformity coefficient – C _U	Coefficient of curvature – C _C					

Plasticity [%]	I _p	W L		
	17.15	29.93		

Cohesive soil (more than 50% fine particles)

% sand + % gravel = 43.43


% sand (43.18) >= % gravel (0.25)

Sample description

low plasticity sandy CLAY

Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Classification of soils based on particle size distribution and plasticity

according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018 **Test report**

S.C. GLODENI ENERGY S.R.L. Client

Project No.

2819LGS

Location

Glodeni municipality, CF 50604, 52635, 52833, Mures county

Date of reception 18.01.2024

Superior depth of sample (m)

3.60 Date of test

25.01.2024

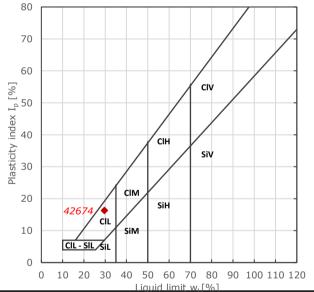
Borehole No.

FS01

Sample No. 42674

Inferior depth of sample (m)

4.00


68.87 Dry sample mass for granulometry [g]

Soil group	Subdivision	Symbol	Size [mm]	Quantification [%]
	Large boulders	Lbo	> 630	0.00
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Со	63-200	0.00
	Coarse gravel	CGr	20-63	0.00
	Medium gravel	MGr	6,3-20	12.56
Coarse	Fine gravel	FGr	2-6,3	12.49
Coarse	Coarse sand	Csa	0,63-2	10.07
	Medium sand	Msa	0,2-0,63	21.25
	Fine sand	Fsa	0,063-0,2	12.96
	Coarse silt	Csi	0,02-0,063	6.80
Fine	Medium silt	Msi	0,0063-0,02	5.74
Tille	Fine silt	Fsi	0,002-0,0063	3.91
	Clay	CI	≤ 0,002	14.22

100								∞ o	0	
<u>~</u> 90						ø	8			
ss 80										
ë 70										
늄 60					1					
50 ta				ø						
5 40				P						
g 30			20000							
20 ent		00000	-				<u>_</u>			
Percentage of total dry mass [%] 80 00 00 00 00 00 00 00 00 00 00 00 00	U	MSi	Si Si	M Sa	Csa	FĞ	MGr	Ş	ပိ	Bo
0	\vdash				4		4			
0.	0.002	დ ^{0.01} ე	g ^{0.1}	0.2	31 ~	<u>ب</u>	10 8	<u>ဥ</u> 1	500 00.	3000 930
	0.0	0.0063	0.1 0.0 0.0 Si	ze of fr	s action				2	9
		_	51	20 01 11	accion	.s u	L.,,,,,,	.7		

Particle diameters [mm]	d_{10}	d ₃₀	d ₆₀		
r article diameters [mm]	-	0.06384	0.50376		
Uniformity coefficient – C _U	Coefficient of curvature – C _C				
<u>-</u>		_			

I	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	I _p	W _L
	Plasticity [%]	16.30	29.63

Non-cohesive soil (more than 50% coarse particles)

% sand + % gravel = 69.33

% sand (44.28) >= % gravel (25.05)

Sample description

gravelly low plasticity clayey SAND

Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

Authorization no. 4056/ISC/22.06.2023

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel: +40 753 099 590 E-mail: office@geosearch.ro

File code

FL-073

Classification of soils based on particle size distribution and plasticity

according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018

Test report

S.C. GLODENI ENERGY S.R.L. Client

FS01

Location

Borehole No.

Glodeni municipality, CF 50604, 52635, 52833, Mureș county

42675

Project No. 2819LGS Date of reception 18.01.2024

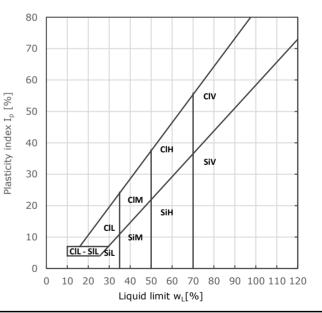
Superior depth of sample (m)

Date of test

05.02.2024

2361.96 Dry sample mass for granulometry [g]

Sample No.


Soil group	Subdivision	Symbol	Size [mm]	Quantification [%]
	Large boulders	Lbo	> 630	0.00
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Co	63-200	0.00
	Coarse gravel	CGr	20-63	40.69
	Medium gravel	MGr	6,3-20	13.62
Coarse	Fine gravel	FGr	2-6,3	8.27
Coarse	Coarse sand	Csa	0,63-2	8.13
	Medium sand	Msa	0,2-0,63	9.58
	Fine sand	Fsa	0,063-0,2	5.92
	Coarse silt	Csi	0,02-0,063	3.51
Fine	Medium silt	Msi	0,0063-0,02	3.03
i iile	Fine silt	Fsi	0,002-0,0063	1.85
	Clay	Cl	≤ 0,002	5.40

Particle diameters [mm]	\mathbf{d}_{10}	d_{30}	d ₆₀	
Particle diameters [iiiii]	-	0.70119	20.65470	
Uniformity coefficient – Cu	Coefficient of curvature – Cc			
_	1	-		

Placticity [9/]	I _p	w _L
Plasticity [%]	-	-

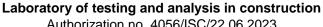
Inferior depth of sample (m) 7.00 100 90 ~ 80 00 00 00 00 00 procent 40 Masă 0 20 Ω g¹⁰⁰ 0.001 Size of fractions - d [mm]

5.50

Pământ necoeziv (mai mult de 50% părți grosiere)

% nisip + % pietriş = 86.21

Sample description sandy silty GRAVEL


Laboratory evaluator eng. geol. Gáll Hunor

Head of laborato eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Classification of soils based on particle size distribution and plasticity

according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018 **Test report**

S.C. GLODENI ENERGY S.R.L. Client

Project No.

2819LGS

Location

Glodeni municipality, CF 50604, 52635, 52833, Mures county

Date of reception 18.01.2024

Borehole No.

FS02

Superior depth of sample (m)

1.60 Date of test

25.01.2024

Sample No. *42677*

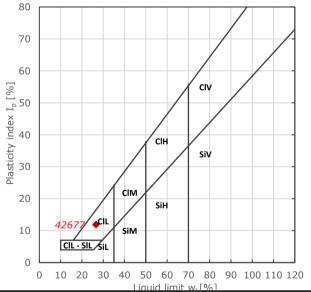
Inferior depth of sample (m)

100

90

2.00

Dry sample mass for granulometry [g]


47.00

Soil group	Subdivision	Symbol	Size [mm]	Quantification [%]
	Large boulders	Lbo	> 630	0.00
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Со	63-200	0.00
	Coarse gravel	CGr	20-63	0.00
	Medium gravel	MGr	6,3-20	0.00
Coarse	Fine gravel	FGr	2-6,3	1.11
Coarse	Coarse sand	Csa	0,63-2	2.85
	Medium sand	Msa	0,2-0,63	21.47
	Fine sand	Fsa	0,063-0,2	19.55
	Coarse silt	Csi	0,02-0,063	13.40
Fine	Medium silt	Msi	0,0063-0,02	5.89
Tille	Fine silt	Fsi	0,002-0,0063	4.26
	Clay	Cl	≤ 0,002	31.47

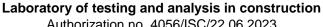
Percentage of total dry mass [80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		**************************************	30 ⁰⁶	9		8					
0	0.002	0.0063 ₂ Fsi	0.02 Msi	0.063 Csi	D.1 NO	www.ess	1 N	10 02 [mm	CGr	200 000L	630- 630- 630-

Particle diameters [mm]	\mathbf{d}_{10}	d ₃₀	d ₆₀		
raticle diameters [iiiii]	-	0.00144	0.09637		
Uniformity coefficient – C _U	Coefficient of curvature – C _C				
_		_			

Diagnicity [9/]	I _p	w_L
Plasticity [%]	11.88	26.55

Cohesive soil (more than 50% fine particles)

% sand + % gravel = 44.98


% sand (43.87) >= % gravel (1.11)

Sample description

low plasticity sandy CLAY

Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Classification of soils based on particle size distribution and plasticity

according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018 **Test report**

S.C. GLODENI ENERGY S.R.L. Client

Project No.

Location

Glodeni municipality, CF 50604, 52635, 52833, Mures county

Date of reception 18.01.2024

Borehole No.

FS02

Sample No. *42679*

Superior depth of sample (m)

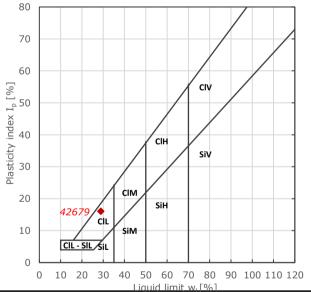
2.60 Date of test

25.01.2024

2819LGS

Inferior depth of sample (m)

3.00


45.10 Dry sample mass for granulometry [g]

Soil group	Subdivision	Symbol	Size [mm]	Quantification [%]
	Large boulders	Lbo	> 630	0.00
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Co	63-200	0.00
	Coarse gravel	CGr	20-63	0.00
	Medium gravel	MGr	6,3-20	0.00
Coarse	Fine gravel	FGr	2-6,3	0.00
Coarse	Coarse sand	Csa	0,63-2	1.19
	Medium sand	Msa	0,2-0,63	16.74
	Fine sand	Fsa	0,063-0,2	29.60
	Coarse silt	Csi	0,02-0,063	12.59
Fine	Medium silt	Msi	0,0063-0,02	5.09
Tille	Fine silt	Fsi	0,002-0,0063	4.84
	Clay	Cl	≤ 0,002	29.95

					P	0		000		0	
					9						
				19	5						
				1/							
				ø							
			Ø								
	عم	eee	ø								
9-06	,e6										
								<u>_</u>			<u>_</u>
ㅁ	<u>FS</u>	ΑSi	Si	Fsa	Σ	CSa	Ϋ́	υ Σ	<u> </u>	ပိ	Bo
		Ш		4		1					
001		01 2	963	0.1	63	1 ~	. 6.9	10 0	63	001	ქ000 წ
0.0	0.0	0	0.0	Size	of fra	action	ns – d	[mm	1]		_
	000000000000000000000000000000000000000										

Particle diameters [mm]	d ₁₀	d ₃₀	d ₆₀ 0.09593		
raticle diameters [iiiii]	-	0.00202			
Uniformity coefficient – C _U	Coefficient of curvature – C _C				
_		_			

Diagticity [9/]	I _p	w_L
Plasticity [%]	16.05	28.84

Cohesive soil (more than 50% fine particles)

% sand + % gravel = 47.53 % sand (47.53) >= % gravel (0)

Sample description

low plasticity sandy CLAY

Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

Authorization no. 4056/ISC/22.06.2023

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel: +40 753 099 590 E-mail: office@geosearch.ro

File code

FL-073

Classification of soils based on particle size distribution and plasticity

according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018

Test report

S.C. GLODENI ENERGY S.R.L. Client

Glodeni municipality, CF 50604, 52635, 52833, Mureș county

Project No. 2819LGS Date of reception 18.01.2024

Location Superior depth of sample (m)

Borehole No. FS02 Sample No. 42682

7.00 Inferior depth of sample (m) 8.00

Date of test 05.02.2024

Dry sample mass for granulometry [g]	2965.81
--------------------------------------	---------

Soil group	Subdivision	Symbol	Size [mm]	Quantification [%]
	Large boulders	Lbo	> 630	0.00
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Co	63-200	0.00
	Coarse gravel	CGr	20-63	27.05
	Medium gravel	MGr	6,3-20	23.82
Coarse	Fine gravel	FGr	2-6,3	11.25
Coarse	Coarse sand	Csa	0,63-2	12.57
	Medium sand	Msa	0,2-0,63	11.13
	Fine sand	Fsa	0,063-0,2	4.49
	Coarse silt	Csi	0,02-0,063	1.66
Fine	Medium silt	Msi	0,0063-0,02	1.15
Tille	Fine silt	Fsi	0,002-0,0063	1.11
	Clay	Cl	≤ 0,002	5.77

100	2 ○
90	/
8 80	
.07 <u>o.</u> c	
<u>B</u> 60	
ë 50	<u> </u>
0 40	
Masa procentuala [%] 08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Σ 20	
10	CG G R Sa Si Si CC CG G G G G G G G G G G G G G G G G
0 -	001 _N
0.	001 7
	Size of fractions – d [mm]

Particle diameters [mm]	\mathbf{d}_{10}	d ₃₀	d ₆₀
r di ticie didineters (illini)	0.07294	0.90114	10.54762
Uniformity coefficient – Cu	Coefficient of curvature – Cc		
144.61		1.06	

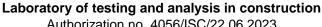
Diosticity [9/]	l _p	\mathbf{w}_{L}
Plasticity [%]	_	_

80 70 60 Plasticity index I_p [%] 50 40 30 20 10 0 10 20 30 40 50 60 70 80 90 100 110 120 Liquid limit w_L[%]

Pământ necoeziv (mai mult de 50% părți grosiere)

% nisip + % pietriş = 90.31

Sample description sandy GRAVEL


Laboratory evaluator eng. geol. Gáll Hunor

Head of laborato eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Classification of soils based on particle size distribution and plasticity

according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018 **Test report**

S.C. GLODENI ENERGY S.R.L. Client

Project No.

2819LGS

Location

Glodeni municipality, CF 50604, 52635, 52833, Mures county

Date of reception 18.01.2024

Borehole No.

FS03

Superior depth of sample (m)

1.00 Date of test

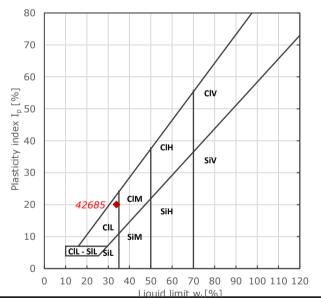
25.01.2024

Sample No. 42685

Inferior depth of sample (m)

1.40

45.90 Dry sample mass for granulometry [g]


Soil group	Subdivision	Symbol	Size [mm]	Quantification [%]
Son Broad	Large boulders	Lbo	> 630	0.00
.,	, and the second			
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Co	63-200	0.00
	Coarse gravel	CGr	20-63	0.00
	Medium gravel	MGr	6,3-20	0.00
Coarse	Fine gravel	FGr	2-6,3	0.11
coarse	Coarse sand	Csa	0,63-2	2.83
	Medium sand	Msa	0,2-0,63	14.75
	Fine sand	Fsa	0,063-0,2	18.30
Fine	Coarse silt	Csi	0,02-0,063	12.19
	Medium silt	Msi	0,0063-0,02	8.65
	Fine silt	Fsi	0,002-0,0063	4.60
	Clay	Cl	≤ 0,002	38.57

Particle diameters [mm]		d ₁₀	d ₃₀	d ₆₀ 0.04213
	•			
	Clay	Cl	≤ 0,002	38.57
11110	Fine silt	Fsi	0,002-0,0063	4.60
Fine	Medium silt	Msi	0,0063-0,02	8.65
	Coarse siit	CSI	0,02-0,003	12.19

Coefficient of curvature - C_C

Plasticity [%]	l _p	\mathbf{w}_{L}
Flasticity [70]	20.02	33.84

100 90 [%] 80 Percentage of total dry mass 70 60 50 40 30 20 10 9.01 g¹⁰⁰ 4000 89 0.001 Size of fractions - d [mm]

Cohesive soil (more than 50% fine particles)

% sand + % gravel = 35.99

Uniformity coefficient - C11

% sand (35.88) >= % gravel (0.11)

Sample description

low plasticity sandy CLAY

Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

Authorization no. 4056/ISC/22.06.2023

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel: +40 753 099 590

E-mail: office@geosearch.ro

File code FL-073

Classification of soils based on particle size distribution and plasticity

according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018

Test report

S.C. GLODENI ENERGY S.R.L. Client

Glodeni municipality, CF 50604, 52635, 52833, Mureș county

Project No. 2819LGS

Date of reception 18.01.2024

Borehole No.

Location

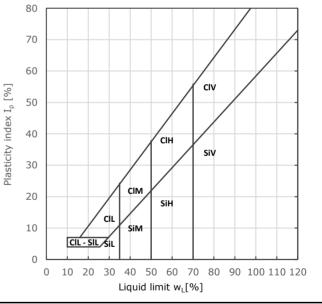
FS03

Sample No. 42689 Superior depth of sample (m) Inferior depth of sample (m)

Date of test 05.02.2024

6.00

4.30


Dry sample mass for granulometry [g]	2406.80

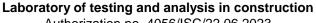
Soil group	Subdivision	Symbol	Size [mm]	Quantification [%]
	Large boulders	Lbo	> 630	0.00
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Co	63-200	0.00
	Coarse gravel	CGr	20-63	32.34
	Medium gravel	MGr	6,3-20	15.21
Coarse	Fine gravel	FGr	2-6,3	9.10
Coarse	Coarse sand	Csa	0,63-2	7.83
	Medium sand	Msa	0,2-0,63	10.39
	Fine sand	Fsa	0,063-0,2	6.28
	Coarse silt	Csi	0,02-0,063	4.05
Fine	Medium silt	Msi	0,0063-0,02	3.51
rine	Fine silt	Fsi	0,002-0,0063	2.02
	Clay	Cl	≤ 0,002	9.27

Particle diameters [mm]	\mathbf{d}_{10}	d ₃₀	d ₆₀
raticle diameters [iiiii]	-	0.38029	12.44211
Uniformity coefficient – Cu	Coef	ficient of curva	iture – Cc
-		-	

Diacticity [9/]	l _p	\mathbf{w}_{L}
Plasticity [%]	-	-

Sample description

sandy silty GRAVEL


Laboratory evaluator eng. geol. Gáll Hunor

Head of laborato eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Classification of soils based on particle size distribution and plasticity

according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018 Test report - no. 47589-RG/03.31.2025

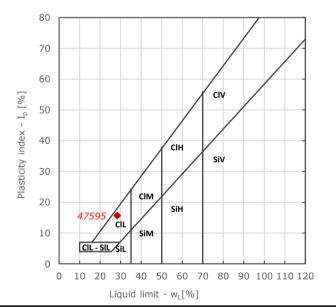
Client S.C. GLODENI ENERGY S.R.L. 3140LGS Project No.

MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Location

Date of reception 45740

45741

Superior depth of sample (m) 1.30 Borehole No. FS04 Date of test Sample No. 47589 Inferior depth of sample (m) 1.50


Dry sample mass for granulometry [g]	52.62

Soil group	Subdivision	Symbol	Size [mm]	Quantified [%]
	Large boulders	Lbo	> 630	0.00
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Со	63-200	0.00
	Coarse gravel	CGr	20-63	0.00
	Medium gravel	MGr	6,3-20	0.00
Coarse	Fine gravel	FGr	2-6,3	0.87
Coarse	Coarse sand	Csa	0,63-2	3.86
	Medium sand	Msa	0,2-0,63	21.12
	Fine sand	Fsa	0,063-0,2	18.64
	Coarse silt	Csi	0,02-0,063	11.05
Fine	Medium silt	Msi	0,0063-0,02	8.36
	Fine silt	Fsi	0,002-0,0063	5.19
	Clay	Cl	≤ 0,002	30.91

Particle diameters [mm]	d ₁₀	d ₃₀	d ₆₀
	-	-	0.10679
Uniformity coefficient – C _U	Coefficient of curvature – C _C		

Diagnicity [9/]	I _p	\mathbf{w}_{L}
Plasticity [%]	15.68	28.37

100 90 80 [%] 70 Procentage of total dry mass 60 50 40 30 20 10 0.001₂0000 g¹⁰⁰ Diameter

Cohesive soil (more than 50% fine particles)

% sand + % gravel = 44.49

% sand (43.62) >= % gravel (0.87)

Sample description

low plasticity sandy CLAY

Laboratory evaluator eng. geol. Gáll Hunor

Head of laborator eng. geol. Nagy Szilárd

Authorization no. 4056/ISC/22.06.2023

Borehole No. FS04

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Classification of soils based on particle size distribution and plasticity

according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018

Test report - no. 47597-RG/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Project No.

Date of reception 24.03.2025

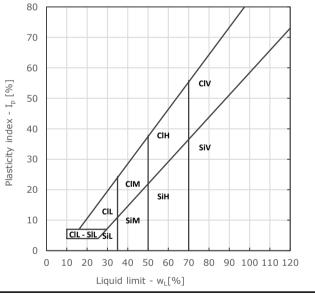
3140LGS

MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Location

Sample No. 47597

Superior depth of sample (m) 2.50 Inferior depth of sample (m) 3.20

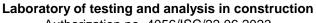
Date of test 25.03.2025


Dry sample mass for granulometry [g]	1494.54

Soil group	Subdivision	Symbol	Size [mm]	Quantification [%]
	Large boulders	Lbo	> 630	0.00
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Со	63-200	0.00
	Coarse gravel	CGr	20-63	16.24
Coarse	Medium gravel	MGr	6,3-20	6.61
	Fine gravel	FGr	2-6,3	4.32
coarse	Coarse sand	Csa	0,63-2	14.27
	Medium sand	Msa	0,2-0,63	29.29
	Fine sand	Fsa	0,063-0,2	6.37
	Coarse silt	Csi	0,02-0,063	4.92
Fine	Medium silt	Msi	0,0063-0,02	4.27
	Fine silt	Fsi	0,002-0,0063	2.45
	Clay	Cl	≤ 0,002	11.26

Particle diameters [mm]	\mathbf{d}_{10}	d_{30}	d ₆₀
· ar araic araineters [imm.]	-	0.21337	0.68398
Uniformity coefficient – Cu	Coef	ficient of curva	ature – Cc
-		-	

Plasticity [%]	l _p	\mathbf{w}_{L}
riasticity [70]	-	-



Sample description

gravelly silty SAND

Laboratory evaluator eng. geol. Gáll Hunor

Head of laborato eng. geol. Nagy Szilárd

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Classification of soils based on particle size distribution and plasticity

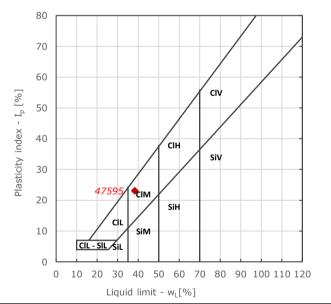
according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018 Test report - no. 47591-RG/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. 3140LGS Project No.

MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Location

Date of reception 45740

Superior depth of sample (m) 1.30 Borehole No. FS05 Date of test Sample No. 47591 45741 Inferior depth of sample (m) 1.50


Dry sample mass for granulometry [g]	49.38
_	

Soil group	Subdivision	Symbol	Size [mm]	Quantified [%]
	Large boulders	Lbo	> 630	0.00
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Со	63-200	0.00
	Coarse gravel	CGr	20-63	0.00
Coarse	Medium gravel	MGr	6,3-20	2.07
	Fine gravel	FGr	2-6,3	1.07
Coarse	Coarse sand	Csa	0,63-2	2.99
	Medium sand	Msa	0,2-0,63	17.08
	Fine sand	Fsa	0,063-0,2	11.66
Fine	Coarse silt	Csi	0,02-0,063	8.61
	Medium silt	Msi	0,0063-0,02	10.79
	Fine silt	Fsi	0,002-0,0063	5.61
	Clay	Cl	≤ 0,002	40.12

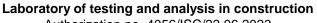
Particle diameters [mm]	d ₁₀	d ₃₀	d ₆₀ 0.02726
Uniformity coefficient – C _U	Coef	ficient of curva	

Plasticity [%]	I _p	\mathbf{w}_{L}
Plasticity [%]	23.10	38.37

100 90 80 Procentage of total dry mass [%] 70 60 50 40 30 20 10 0.001₂0000 0.0063 g¹⁰⁰ Diameter

Cohesive soil (more than 50% fine particles)

% sand + % gravel = 34.87


% sand (31.73) >= % gravel (3.14)

Sample description

medium plasticity sandy CLAY

Laboratory evaluator eng. geol. Gáll Hunor

Head of laborator eng. geol. Nagy Szilárd

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Classification of soils based on particle size distribution and plasticity

according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018 Test report - no. 47594-RG/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Project No.

3140LGS

Location

MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA

Date of reception 45740

Borehole No. FS06

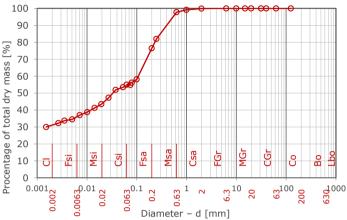
Superior depth of sample (m)

Date of test

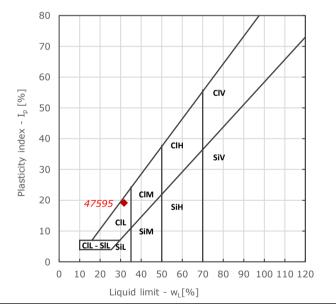
45741

Sample No. 47594

Inferior depth of sample (m)


2.00

Dry sample mass for granulometry [g]	62.02


Soil group	Subdivision	Symbol	Size [mm]	Quantified [%]
	Large boulders	Lbo	> 630	0.00
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Со	63-200	0.00
	Coarse gravel	CGr	20-63	0.00
	Medium gravel	MGr	6,3-20	0.00
Coarse	Fine gravel	FGr	2-6,3	0.10
	Coarse sand	Csa	0,63-2	2.18
	Medium sand	Msa	0,2-0,63	21.25
	Fine sand	Fsa	0,063-0,2	21.53
Fine	Coarse silt	Csi	0,02-0,063	11.18
	Medium silt	Msi	0,0063-0,02	7.86
	Fine silt	Fsi	0,002-0,0063	4.96
	Clay	Cl	≤ 0,002	30.94

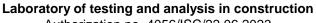
Particle diameters [mm]	d_{10}	d_{30}	d ₆₀
ratticle diameters [mm]	-	0.00153	0.11034
Uniformity coefficient – C _U	Coefficient of curvature – C _C		ture – C _C
-		-	

Plasticity [%]	I _p	\mathbf{w}_{L}
Plasticity [76]	19.17	31.70

1.70

Cohesive soil (more than 50% fine particles)

% sand + % gravel = 45.06


% sand (44.96) >= % gravel (0.1)

Sample description

low plasticity sandy CLAY

Laboratory evaluator eng. geol. Gáll Hunor

Head of laborator eng. geol. Nagy Szilárd

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Classification of soils based on particle size distribution and plasticity

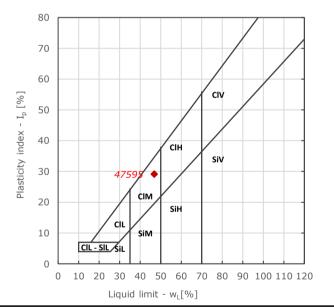
according to SR EN ISO 14688:2-2018 / SR EN ISO 17892-4:2017 / SR EN ISO 17892-12:2018 Test report - no. 47595-RG/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. 3140LGS Project No.

MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Location

Date of reception 45740

Superior depth of sample (m) 1.30 Borehole No. FS07 Date of test **Sample No.** 47595 45741 Inferior depth of sample (m) 1.50


Dry sample mass for granulometry [g]	42.41

Soil group	Subdivision	Symbol	Size [mm]	Quantified [%]
	Large boulders	Lbo	> 630	0.00
Very coarse	Boulders	Во	200-630	0.00
	Cobbles	Co	63-200	0.00
	Coarse gravel	CGr	20-63	0.00
Coarse	Medium gravel	MGr	6,3-20	0.00
	Fine gravel	FGr	2-6,3	0.00
	Coarse sand	Csa	0,63-2	0.54
	Medium sand	Msa	0,2-0,63	6.01
	Fine sand	Fsa	0,063-0,2	7.29
Fine	Coarse silt	Csi	0,02-0,063	11.19
	Medium silt	Msi	0,0063-0,02	12.44
	Fine silt	Fsi	0,002-0,0063	8.22
	Clay	Cl	≤ 0,002	54.31

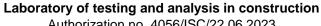
Particle diameters [mm]	\mathbf{d}_{10}	d ₃₀	d ₆₀
r article diameters (min)	-	-	0.00478
Uniformity coefficient – C _U	Coefficient of curvature – C_C		
-		-	

Plasticity [%]	I _p	\mathbf{w}_{L}
Plasticity [%]	29.18	46.87

100 90 80 Procentage of total dry mass [%] 70 60 50 40 30 20 10 0.001₂0000 0.0063 g¹⁰⁰ Diameter

Cohesive soil (more than 50% fine particles)

% sand + % gravel = 13.84


% sand + % gravel has no influence on soil behavior

Sample description

medium plasticity CLAY

Laboratory evaluator eng. geol. Gáll Hunor

Head of laborator eng. geol. Nagy Szilárd

street Principală, no. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

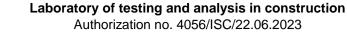
DETERMINATION OF THE SHEAR STRENGTH OF SOILS THROUGH DIRECT SHEAR TEST

according to SR EN ISO 17892-10:2019

Test report

Client S.C. Glodeni Energy S.R.L. Order nr. 2819LGS Date of reception 18-Jan-2024 Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county **Test date** 17-Feb-2024 Sample type undisturbed Superior depth of sample 2.00 m Borehole no. FS01 Test type consolidated-drained (CD) Inferior depth of sample 2.40 m Sample no. 42672 Sample description vellowish brown low plasticity sandy CLAY Final observations **Nominal dimensions** Peak Post-peak Linear (Peak) Diameter [mm] 50 Linear (Post-peak) Machine type 6. Controls 27-WF21A60 Area [cm²] 19.63 150 **Initial physical parameters** Vertical load [kPa] 27 kPa 52 kPa 77 kPa 19.01 18.97 Initial water content w [%] 19.06 Stress Particle density $\gamma_s [kN/m^3]$ 26.8 26.8 26.8 Initial dry density $\gamma_d [kN/m^3]$ 16.86 16.51 16.70 Shear 75 Initial bulk density $\gamma [kN/m^3]$ 19.65 20.05 19.89 Void ratio 0.62 0.59 0.60 Degree of saturation Sr [%] 83.33 87.86 86.14 50 Shear parameters [mm/min] 0.0080 25 Shear rate 0.0080 0.0080 [kPa] 22.03 35.67 47.86 Maximum shear strength n Chosen post-peak shear strength [kPa] 18.89 31.83 43.64 25 50 75 100 125 150 O Displacement at failure [mm] 2.26 2.21 1.80 Applied vertical stress [kPa] Chosen post-peak displacement 3.39 2.85 2.60 [mm] 0.0 60 (mm) Shear strength [kPa] 0.2 50 0.4 deformation 40 0.6 30 0.8 20 1.0 10 /ertical 1.2 0 1.4 0 4 6 8 10 0.0 5.0 10.0 15.0 20.0 25.0 Horizontal displacement [mm] Time (vmin) ----- 27 kPa - - - 52 kPa 77 kPa ----- 27 kPa - - - 52 kPa ■77 kPa

Shear resistance parameters			
ф' peak			
27.32°	8.32 °	26.33°	5.72°


Laboratory evaluator eng. geol. Gáll Hunor

Head of laborator eng. geol. Nagy Szilárd

-081

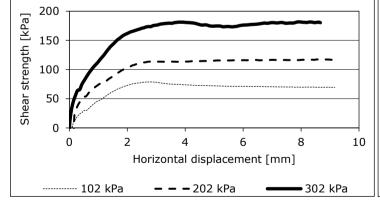
The results contained in this test report refer only to the object under test. Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

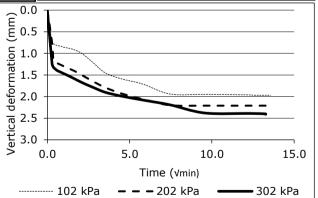
This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

GeoSearch

street Principală, no. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590

E-mail: office@geosearch.ro


DETERMINATION OF THE SHEAR STRENGTH OF SOILS THROUGH DIRECT SHEAR TEST


according to SR EN ISO 17892-10:2019

Test report

Client S.C. Glodeni Energy S.R.L. Order nr. 2819LGS Date of reception 18-Jan-2024 Glodeni municipality, CF 50604, 52635, 52833, Mureș county Location Test date 16-Feb-2024 Sample type undisturbed Superior depth of sample FS02 1.60 m Borehole no. Inferior depth of sample Test type consolidated-drained (CD) 2.00 m Sample no. 42677 yellowish brown firm low plasticity sandy CLAY Sample description

Final observations						-							
		Nominal	dimensions								. ,	(5 1)	
Diameter	[mm]	50	Machine tune	1 Controls	27-WF21A60			Peak			inear ((Реак)	
Area	[cm ²]	19.63	Machine type	4. Controls	27-WF21A00	350 -							\neg
Initial phys			ical parameters										
Vertical load		[kPa]	102 kPa	202 kPa	302 kPa								
Initial water content		w [%]	17.44	17.40	17.49	s [kPa] -							
Particle density	γ_s	[kN/m³]	26.8	26.8	26.8	Stress							
Initial dry density	γ_d	[kN/m³]	17.10	16.63	16.93	, 200							_
Initial bulk density	γ	[kN/m³]	20.08	19.53	19.89	Shear						→	
Void ratio		e	0.57	0.61	0.58	^{ις} 150 -							-
Degree of saturation		Sr [%]	84.01	77.75	81.96	100 -							
		Shear	parameters		•	100 -		•					
Shear rate	[m	m/min]	0.0080	0.0080	0.0080	50 -							
Maximum shear strength		[kPa]	78.77	117.35	181.55								
Chosen post-peak shear streng	gth	[kPa]	-	-	-	0 -							
Displacement at failure		[mm]	2.83	8.79	7.96) 5	50 100			250		350
Chosen post-peak displaceme	nt	[mm]	-	-	-			Appl	ied vei	rtical s	tress	s [kPa]	

Shear resistance parameters						
ф' peak	ф' peak					
27.20°	22.08°	-	-			

Vaboratory evaluator eng. geol. Gáll Hunor Head of laborator eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L. This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

Laboratory of testing and analysis in construction

Authorization no. 4056/ISC/22.06.2023

street Principală, no. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590

E-mail: office@geosearch.ro

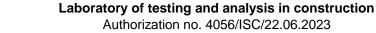
DETERMINATION OF THE SHEAR STRENGTH OF SOILS THROUGH DIRECT SHEAR TEST

according to SR EN ISO 17892-10:2019

Test report

Client S.C. Glodeni Energy S.R.L. Order nr. 2819LGS Date of reception 18-Jan-2024 Location Glodeni municipality, CF 50604, 52635, 52833, Mureș county Test date 19-Feb-2024 Sample type undisturbed Superior depth of sample 1.00 m Borehole no. FS03 Test type consolidated-drained (CD) Inferior depth of sample 1.40 m Sample no. 42685 vellowish brown firm low plasticity sandy CLAY Sample description Final observations **Nominal dimensions** Peak Post-peak Linear (Peak) Diameter [mm] 50 Linear (Post-peak) Machine type 9. Matest S277-01 Area [cm²] 19.63 100 **Initial physical parameters** Vertical load [kPa] 27 kPa 52 kPa 77 kPa Stress [kPa] 75 20.47 20.41 20.53 Initial water content w [%] Particle density $\gamma_s [kN/m^3]$ 26.8 26.8 26.8 Initial dry density $\gamma_d [kN/m^3]$ 15.51 15.47 15.63 Shear 3 50 Initial bulk density $\gamma [kN/m^3]$ 18.82 18.68 18.65 Void ratio 0.72 0.73 0.73 Degree of saturation Sr [%] 78.18 76.60 76.59 25 Shear parameters [mm/min] 0.0080 0.0080 Shear rate 0.0080 [kPa] 24.96 34.12 48.44 Maximum shear strength 0 Chosen post-peak shear strength [kPa] 20.37 27.50 41.72 25 50 75 100 Displacement at failure 2.04 [mm] 1.25 2.04 Applied vertical stress [kPa] Chosen post-peak displacement 4.40 1.09 2.77 [mm] 0.0 60 (mm) Shear strength [kPa] 0.2 50 0.4 deformation 40 0.6 30 0.8 20 1.0 10 /ertical 1.2 0 1.4 2 4 6 8 10 0.0 5.0 10.0 15.0 20.0 Horizontal displacement [mm] Time (vmin) ----- 27 kPa – 52 kPa 77 kPa ----- 27 kPa **– – –** 52 kPa ■77 kPa

Shear resistance parameters					
ф' peak	ф' peak				
25.16°	11.42°	23.12°	7.66°		


Laboratory evaluator eng. geol. Gáll Hunor

Head of laborato eng. geol. Nagy Szilárd

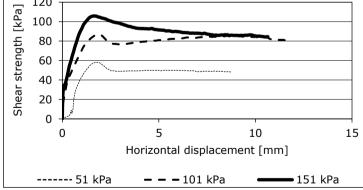
The results contained in this test report refer only to the object under test.

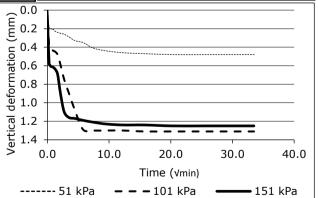
Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L. This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

-081

Principală street, no. 49 Rădaia 407059, Cluj county Tel.: +40 753 099 590

E-mail: office@geosearch.ro


DETERMINATION OF THE SHEAR STRENGTH OF SOILS THROUGH DIRECT SHEAR TEST


according to SR EN ISO 17892-10:2019

Test report - no.47590-RFD/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Order no. 3140LGS Date of reception 24-Mar-2025 **Project** MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Location Test date 24-Mar-2025 Top depth of sample FS04 Sample type undisturbed 1.50 m Borehole no. Bottom depth of sample Test type consolidated-drained (CD) 1.70 m Sample number 47590

Sample description		greyish-brown, stiff, low plasticity sandy CLAY			
Final observations					-
	Nomina	l dimensions			● Peak ◆ Post-peak
Diameter	[mm] 50	Device type	1 Controls	27-WF2060	Linear (Peak) — — Linear (Post-pea
Area	[cm ²] 19.63	Device type	1. Controis	27-WF2000	200
	Initial phys	sical parameters			
Load	[kPa]	51 kPa	101 kPa	151 kPa	
Initial water content	w [%]	18.74	18.69	18.78	포 150
Particle density	$\gamma_s [kN/m^3]$	26.52	26.52	26.52	Stress
Initial dry density	$\gamma_d [kN/m^3]$	17.27	17.40	17.51	
Initial bulk density	γ [kN/m³]	20.51	20.65	20.80	N
Void ratio	ϵ	0.54	0.52	0.51	No.
Degree of saturation	Sr [%]	94.65	96.33	98.65	
	Shear	parameters			50
Rate of shear displacement	[mm/min]	0.0080	0.0080	0.0080	
Maximum Shear strength	[kPa]	58.06	86.84	105.82	
Chosen post-peak shear stre	ngth [kPa]	48.58	82.07	94.80	0
Displacement at failure	[mm]	1.76	1.85	1.62	0 50 100 150 2
Displacement chosen for pos	st-peak [mm]	7.12	10.89	3.55	Applied vertical stress [kPa]

Shear resistance parameters					
ф' peak					
25.53°	35.34 kPa	24.81°	28.46 kPa		

Laboratory evaluator eng. geol. Gáll Hunor

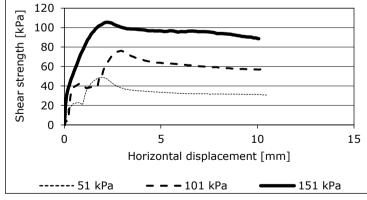
Head of laborator eng. geol. Nagy Szilárd

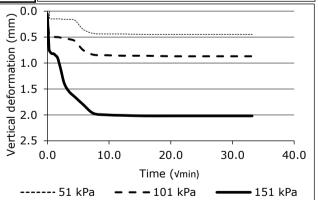
The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L. This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

Principală street, no. 49 Rădaia 407059, Cluj county Tel.: +40 753 099 590

E-mail: office@geosearch.ro


DETERMINATION OF THE SHEAR STRENGTH OF SOILS THROUGH DIRECT SHEAR TEST


according to SR EN ISO 17892-10:2019

Test report - no.47593-RFD/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Order no. 3140LGS Date of reception 24-Mar-2025 **Project** MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Location Test date 24-Mar-2025 Top depth of sample FS06 Sample type undisturbed 1.50 m Borehole no. Bottom depth of sample Test type consolidated-drained (CD) 1.70 m Sample number 47593

Sample description					greyish-brown	n, firm, low p	lasticity sand	y CLAY			
Final observations						-					
		Nominal	l dimensions			•	Peak		•	Post-peak	
Diameter	[mm]	50	Device type	1 Controls	27-WF21A60]L <u> —</u>	Linear (Peak)			Linear (Po	st-peak)
Area	[cm ²]	19.63	Device type	4. COITHOIS	27-WI ZIAUU	200 -			Τ		
	Init	tial physi	ical parameters								
Load		[kPa]	51 kPa	101 kPa	151 kPa	⁵ a]					
Initial water content		w [%]	14.76	14.72	14.80	[KPa] 150 -					
Particle density	γ_{s}	[kN/m³]	26.39	26.39	26.39	Stress					
Initial dry density	γ _d	[kN/m³]	17.86	17.59	17.63	r St					
Initial bulk density	γ	[kN/m³]	20.50	20.18	20.24	Shear -					
Void ratio		е	0.48	0.50	0.50	S				1	
Degree of saturation		Sr [%]	83.16	79.11	80.15	_		/	*		
		Shear p	parameters			50 -		<u> </u>			
Rate of shear displacement	[m	nm/min]	0.0080	0.0080	0.0080		//*				
Maximum Shear strength		[kPa]	48.85	76.18	105.53						
Chosen post-peak shear stre	ngth	[kPa]	36.42	63.96	91.75	0 -					
Displacement at failure		[mm]	1.92	2.93	2.25				00	150	200
Displacement chosen for pos	t-peak	[mm]	3.31	4.82	9.02			Applied v	vertical	stress [kPa]

Shear resistance parameters					
ф' peak					
29.55°	19.60 kPa	28.96°	8.16 kPa		

Vaboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L.

This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

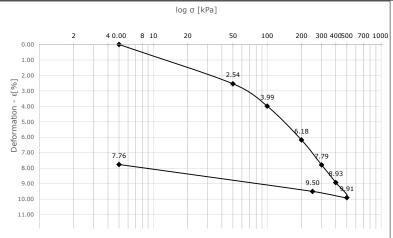
Incremental loading oedometer test

according to SR EN ISO 17892-5:2017

Test report

 Client
 S.C. Glodeni Energy S.R.L.
 Order no.
 2819LGS

 Location
 Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 Reception date
 18-Jan-2024


 Test date
 16-Feb-2024

Borehole FS01 Sample number 42672 Sample depth 2.00 - 2.40 m Machine type CONTROLS 26-WF31E20 Loading cell ACE 8

ta	Test method	Oedometer compressibility test
g	Sample preparation procedure	Undisturbed - Flooded
ş	Sample description	yellowish brown low plasticity sandy CLAY
) L	Observations	-
	-	

al _	Diameter	D ₀ [mm]	71.40	Particle density	γ_s [kN/m 3]	26.80	Initial water content	w ₀ [%]	19.01
nitia ysic	Sample height	H _o [mm]	20	Initial dry density	γ _d [kN/m³]	16.60	Degree of saturation	S,[%]	84.61
pars	Sample mass	m₀[g]	161.35	Initial bulk density	γ [kN/m³]	19.76	Void ratio	e ₀ [-]	0.614

		Pressure	Deformation	Void ratio	
	Loading stage	σ [kPa]	ε[%]	e [-]	
	Stage 1	5 - 50	2.540	0.573	
	Stage 2	50 - 100	3.985	0.550	
ý	Stage 3	100 - 200	6.175	0.514	
nete	Stage 4	200 - 300	7.785	0.488	
oarar	Stage 5	300 - 400	8.925	0.470	
- ple	Stage 6	400 - 500	9.905	0.454	
san	Stage 7	500 - 250	9.500	0.461	
ninec	Stage 8	250 - 5	7.760	0.489	
Determined sample parameters	Stage 9	-	-	-	
Δ	Stage 10	-	-	-	
	Stage 11	-	-	-	
	Stage 12	-	-	-	

	Loading stage	Pressure σ [kPa]	Coef. of vertical consolidation cv [m2/s]	Coef. of secondary compression Ca [-]	
	Stage 1	5 - 50	-	-	
"	Stage 2	50 - 100	-	-	
ters	Stage 3	100 - 200	-	-	
ame	Stage 4	200 - 300	-	-	
par	Stage 5	300 - 400	-	-	
эble	Stage 6	400 - 500	-	-	
san	Stage 7	500 - 250	-	-	
ped	Stage 8	250 - 5	-	-	
Determined sample parameters	Stage 9	-	-	-	
Dete	Stage 10	-	-	-	
-	Stage 11	-	-	-	
	Stage 12	-	-	-	

•		•	•
Swell	ing pressure	p _u [kPa]	0.00
	Preload	p _{pr} [kPa]	5.00

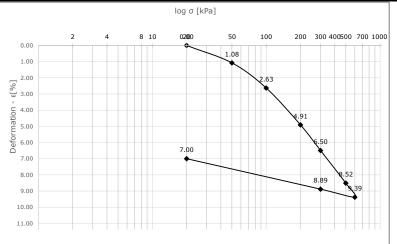
				log σ [kl	Pa]				
0.62		0.614							
Void ratio - e[-]					0.573	0.550			
Pio/ 0.54						9.330	0.514		
0.50		0.489		_			0.488		
0.46							•	0.454	
0.42	2	4	8 10	20	50	100	200 300 40	0500 700 1	000

	Loading stage	Pressure σ [kPa]	Temperature T [°C]	Initial bulk density γ [kN/m³]	Specimen height change under load ΔH [mm]	Volume of soil particles V _s [%]	pores	Oedometer modulus E _{oed} [kPa]	Coef. of compressibility $a_v [m^2/MN]$	Coef. of volume compressibility m_v [m²/MN]	Compression index	Swelling index C _s [-]
	Stage 1	5 - 50	20	20.28	0.508	63.57	36.43	1772	0.911	0.564		
s s	Stage 2	50 - 100	20	20.58	0.797	64.52	35.48	3460	0.467	0.289]	
parameters	Stage 3	100 - 200	20	21.06	1.235	66.03	33.97	4566	0.354	0.219		
rar	Stage 4	200 - 300	20	21.43	1.557	67.18	32.82	6211	0.260	0.161		
	Stage 5	300 - 400	20	21.70	1.785	68.02	31.98	8772	0.184	0.114		
를	Stage 6	400 - 500	20	21.93	1.981	68.76	31.24	10204	0.158	0.098	0.151	0.017
sample	Stage 7	500 - 250	20	21.83	1.9	68.45	31.55	-	,	-	0.151	0.017
	Stage 8	250 - 5	20	21.42	1.552	67.16	32.84	-	,	-		
듩	Stage 9	-	-	-	-	-	-	-	,	-		
Determined	Stage 10	-	-	-	-	-	-	-	-	Geoforce		
Ď	Stage 11	-	-	-	-	-	-	-	-	(4) ST		
	Stage 12	-	-	-	-	-	-	-	-	1-165 E	1	

Laboratory evaluator eng. geol. Gáll Hunor

Incremental loading oedometer test

according to SR EN ISO 17892-5:2017


Test report

 Client Location
 S.C. Glodeni Energy S.R.L.
 S.C. Glodeni Energy S.R.L.
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 S.C. Glodeni mureş county

ta	Test method	Oedometer compressibility test
g	Sample preparation procedure	Undisturbed - Flooded
st	Sample description	yellowish brown firm low plasticity sandy CLAY
_ <u>₩</u>	Observations	

al_	Diameter	D ₀ [mm]	71.40	Particle density	γ _s [kN/m³]	26.80	Initial water content	w ₀ [%]	17.44
nitia ıysic	Sample height	H _o [mm]	20	Initial dry density	γ _d [kN/m³]	16.99	Degree of saturation	S _r [%]	82.52
pars	Sample mass	m₀[g]	162.90	Initial bulk density	γ [kN/m³]	19.95	Void ratio	e ₀ [-]	0.578

	Loading stage	Pressure	Deformation	Void ratio
	Stage 1	σ [kPa] 20 - 50	ε[%] 1.075	e [-] 0.561
	Stage 2	50 - 100	2.630	0.536
ø	Stage 3	100 - 200	4.910	0.500
Determined sample parameters	Stage 4	200 - 300	6.495	0.475
oaran	Stage 5	300 - 500	8.515	0.443
ple	Stage 6	500 - 600	9.385	0.430
l san	Stage 7	600 - 300	8.885	0.438
ninec	Stage 8	300 - 20	7.000	0.467
eterr	Stage 9	•	-	
Δ	Stage 10	-	-	-
	Stage 11	-	-	-
	Stage 12	-	-	-

	Loading stage	Pressure σ [kPa]	Coef. of vertical consolidation cv [m2/s]	Coef. of secondary compression $C\alpha$ [-]
	Stage 1	20 - 50	-	-
"	Stage 2	50 - 100	-	-
Determined sample parameters	Stage 3	100 - 200	-	-
ame	Stage 4	200 - 300	-	-
par	Stage 5	300 - 500	-	-
eldr	Stage 6	500 - 600	-	-
san	Stage 7	600 - 300	-	-
bed	Stage 8	300 - 20	-	-
Ē	Stage 9	-	-	-
Dete	Stage 10	-	-	-
	Stage 11	-	-	-
	Stage 12	-	-	-
<u> </u>	Suppling 5		n [kDa]	1.40

Swelling pressure	p _u [kPa]	1.40
Preload	p _{pr} [kPa]	20.00

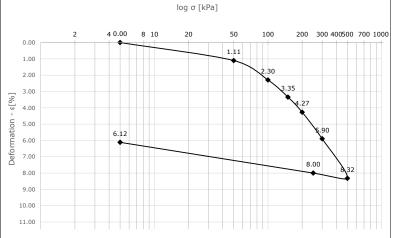
				log σ [kP	a]				
0.56				0.578	0.561				
Void ratio - e-[-]						0.536			
0.48				0.467			0.500	0.475	
0.44								0.438	
0.40	2	4	8 10	20	50	100	200	300 400500	700 1000

	Loading stage	Pressure σ [kPa]	Temperature T [°C]	Initial bulk density γ [kN/m³]	Specimen height change under load ΔH [mm]	Volume of soil particles V _s [%]	volume of	Oedometer modulus E _{oed} [kPa]	Coef. of compressibility $a_v [m^2/MN]$	Coef. of volume compressibility m_v [m²/MN]	Compression index	Swelling index C _s [-]
	Stage 1	20 - 50	20	20.17	0.215	64.07	35.93	2791	0.565	0.358		
s s	Stage 2	50 - 100	20	20.49	0.526	65.09	34.91	3215	0.491	0.311]	
parameters	Stage 3	100 - 200	20	20.98	0.982	66.66	33.34	4386	0.360	0.228		
rar	Stage 4	200 - 300	20	21.34	1.299	67.79	32.21	6309	0.250	0.159		
	Stage 5	300 - 500	20	21.81	1.703	69.28	30.72	9901	0.159	0.101		
를	Stage 6	500 - 600	20	22.02	1.877	69.95	30.05	11494	0.137	0.087	0.143	0.025
sample	Stage 7	600 - 300	20	21.90	1.777	69.56	30.44	-		-	0.143	0.023
	Stage 8	300 - 20	20	21.45	1.4	68.15	31.85	-		-		
듩	Stage 9	-	-	-	-	-	-	-		-		
Determined	Stage 10	-	-	-	-	-	-	-	-	George		
Ď	Stage 11	-	-	-	-	-	-	-	-	199		
	Stage 12	-	-	-	-	-	-	-	-	1-165 E	1	

Incremental loading oedometer test

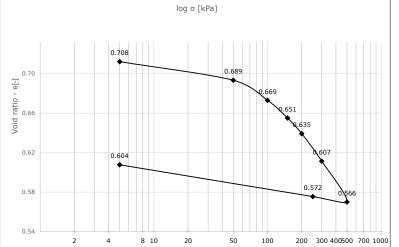
according to SR EN ISO 17892-5:2017

Test report


 Client
 S.C. Glodeni Energy S.R.L.
 Order no.
 2819LGS

 Location
 Glodeni municipality, CF 50604, 52635, 52833, Mureş county
 Test date
 19-Feb-2024

Borehole FS03 Sample no. 42685 Sample depth 1.00 - 1.40 m Machine type CONTROLS 27-T0302 Loading cell Cell 5


ţ.	Test method				Oedometer compressibility test						
g	Sample preparat	ion procedure)			turbed - Flooded					
st	Sample descripti	on			yellowish brown firm low plasticity sandy CLAY						
ř	Observations				-						
e a	Diameter	D ₀ [mm]	71.40	Particle density	γ _s [kN/m ³]	26.80	Initial water content	w ₀ [%]	19.32		
nitial iysic amet	Height	H _o [mm]	20	Initial dry density	γ _d [kN/m³]	15.69	Degree of saturation	S,[%]	74.55		
_ 4 g	Sample mass	m₀[g]	152.86	Initial bulk density	γ [kN/m³]	18.72	Void ratio	e ₀ [-]	0.708		

	Loading stage	Pressure σ [kPa]	Deformation ε[%]	Void ratio e [-]
	Stage 1	5 - 50	1.105	0.689
	Stage 2	50 - 100	2.295	0.669
ø	Stage 3	100 - 150	3.345	0.651
Determined sample parameters	Stage 4	150 - 200	4.270	0.635
oarar	Stage 5	200 - 300	5.900	0.607
leld	Stage 6	300 - 500	8.320	0.566
Isan	Stage 7	500 - 250	8.000	0.572
ninec	Stage 8	250 - 5	6.115	0.604
etern	Stage 9	-	-	-
۵	Stage 10	-	-	-
	Stage 11	-	-	-
	Stage 12	-	-	-

	Loading stage	Pressure σ [kPa]	Coef. of vertical consolidation c_v [m²/s]	Coef. of secondary compression \mathbf{C}_{α} [-]
	Stage 1	5 - 50	-	-
	Stage 2	50 - 100	-	-
ters	Stage 3	100 - 150		-
ame	Stage 4	150 - 200		-
par	Stage 5	200 - 300		-
el dr	Stage 6	300 - 500		-
san	Stage 7	500 - 250		-
peu	Stage 8	250 - 5	-	-
Ē	Stage 9	-		-
Determined sample parameters	Stage 10	-	-	-
	Stage 11	-	-	-
	Stage 12	-	-	-

Preload	p _{pr} [kPa]	2.00
Swelling pressure	p _u [kPa]	5.00

	Loading stage	Pressure σ [kPa]	Temperature T [°C]	Initial bulk density γ [kN/m³]	Specimen height change under load ΔH [mm]	Volume of soil particles V _s [%]	Volume of pores V _p [%]	Oedometer modulus E _{oed} [kPa]	Coef. of compressibility $a_v [m^2/MN]$	Coef. of volume compressibility $m_v [m^2/MN]$	Compression index C _c [-]	Swelling index C _s [-]
	Stage 1	5 - 50	20	18.93	0.221	59.20	40.80	4072	0.419	0.246		
5	Stage 2	50 - 100	20	19.16	0.459	59.92	40.08	4202	0.407	0.238		
parameters	Stage 3	100 - 150	20	19.37	0.669	60.57	39.43	4762	0.359	0.210	-	
Ē	Stage 4	150 - 200	20	19.56	0.854	61.15	38.85	5405	0.316	0.185		
	Stage 5	200 - 300	20	19.89	1.180	62.21	37.79	6135	0.278	0.163		
l age	Stage 6	300 - 500	20	20.42	1.664	63.85	36.15	8264	0.207	0.121	0.174	0.019
sample	Stage 7	500 - 250	20	20.35	1.600	63.63	36.37	-	-	-	0.174	0.019
	Stage 8	250 - 5	20	19.94	1.223	62.36	37.64	-	-	-	1	
Ë	Stage 9	-	-	-	-	-	-	-	-	·	1	
Determined	Stage 10	-	-	-	-	-	-	-	-	C George Col		
De	Stage 11	-	-	-	-	-	-	-	-	GSF		
	Stage 12	-	-	-	-	-	-	-	-	GeoSearch		

Laboratory evaluator eng. geol. Gáll Hunor Head of laboratory eng. geol. Nagy Szilárd

Principală street, no. 49 Rădaia 407059, Cluj county Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Incremental loading oedometer test

according to SR EN ISO 17892-5:2017

Test report - no. 47592-RE/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Location

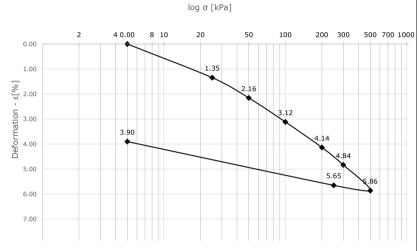
MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA

Order nr. Reception date

3140LGS 24-Mar-2025

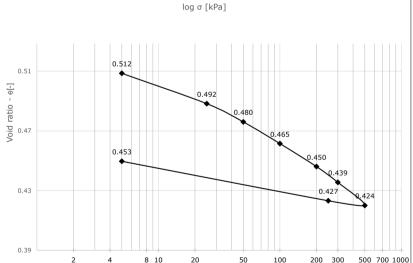
Project Borehole

Test date


24-Mar-2025 Loading cell ACE 7

Device type CONTROLS 26-WF31E20 FS05 Sample number 47592 1.50 - 1.70 Test method Consolidation test Test data Sample preparation procedure Undisturbed - Flooded

rs	Diameter	D ₀ [mm]	50.47 Particle density	v _a [kN/m³] 26,41 Initial water content	w.[%]		
	Observations			•			
	Sample description			brownish-grey, stiff, medium plasticity sandy CLAY			


al ters	Diameter	D ₀ [mm]	50.47	Particle density	γ _s [kN/m³]	26.41	Initial water content	w ₀ [%]	17.17
nitia Iysic amet	Sample height	H _o [mm]	20	Initial dry density	γ_d [kN/m 3]	17.47	Degree of saturation	S _r [%]	90.27
lr ph para	Sample mass	m _o [g]	83.49	Initial bulk density	γ [kN/m³]	20.46	Void ratio	e ₀ [-]	0.512

		Decesion	Deformation	Void ratio
	Loading stage	Pressure σ [kPa]	Deformation ε[%]	void ratio e [-]
	Stage 1	5 - 25	1.345	0.492
	Stage 2	25 - 50	2.155	0.480
	Stage 3	50 - 100	3.115	0.465
netei	Stage 4	100 - 200	4.135	0.450
Determined sample parameters	Stage 5	200 - 300	4.835	0.439
l eldr	Stage 6	300 - 500	5.860	0.424
l san	Stage 7	500 - 250	5.650	0.427
ninec	Stage 8	250 - 5	3.900	0.453
etern	Stage 9	-	-	-
Δ	Stage 10	-	-	-
	Stage 11	-	-	-
	Stage 12	-	-	-

	Loading stage	Pressure σ [kPa]	Coef. Of vertical consolidation cv [m2/s]	Coef. Of secondary compression Ca [-]
	Stage 1	5 - 25	-	-
40	Stage 2	25 - 50	-	-
sters	Stage 3	50 - 100	-	-
ame	Stage 4	100 - 200	-	•
par	Stage 5	200 - 300	-	•
əldı	Stage 6	300 - 500	-	•
san	Stage 7	500 - 250	-	-
peu	Stage 8	250 - 5	-	-
Determined sample parameters	Stage 9	-	-	-
	Stage 10	•	-	•
	Stage 11	-	-	-
	Stage 12	-	-	-

Swelling pressure	p _u [kPa]	0.40
Preload	p _{pr} [kPa]	5.00

							. 4	8 10	20 50	100 20	0 300 500	700 1000
	Loading stage	Pressure σ [kPa]	Temperature T [°C]	Initial bulk density γ [kN/m³]	Specimen height change under load ΔH [mm]	Volume of soil particles V _s [%]	Volume of pores V _p [%]	Oedometer modulus E _{oed} [kPa]	Coef. of compressibility a_v [m²/MN]	Coef. Of volume compressibility $m_v [m^2/MN]$	Compression index C _c [-]	Swelling index C _s [-]
	Stage 1	5 - 25	20	20.74	0.269	67.03	32.97	1487	1.017	0.672		l
<u>s</u>	Stage 2	25 - 50	20	20.91	0.431	67.59	32.41	3086	0.490	0.324		0.015
parameters	Stage 3	50 - 100	20	21.12	0.623	68.26	31.74	5208	0.290	0.192	0.059	
la l	Stage 4	100 - 200	20	21.35	0.827	68.98	31.02	9804	0.154	0.102		
	Stage 5	200 - 300	20	21.50	0.967	69.49	30.51	14286	0.106	0.070		
sample	Stage 6	300 - 500	20	21.74	1.172	70.25	29.75	19512	0.077	0.051		
san	Stage 7	500 - 250	20	21.69	1.13	70.09	29.91	-	-	-	0.059	0.013
	Stage 8	250 - 5	20	21.29	0.78	68.81	31.19	-	-	-		ł
Ë	Stage 9	-	-	-	-	-	-	-	-	-		
Determined	Stage 10	-	-	-	-	-	-	-	-	-		
	Stage 11	•	-	•	-	-	-	-	-	GeoSearch		
	Stage 12	-	-	ı	-	-	-	-	-	THE PARTY		

Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

Principală street, no. 49 Rădaia 407059, Cluj county Tel.: +40 753 099 590 E-mail: office@geosearch.ro

Incremental loading oedometer test

according to SR EN ISO 17892-5:2017

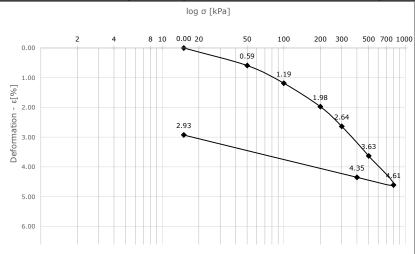
Test report - no. 47596-RE/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Location

MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA

Order nr. Reception date 3140LGS 24-Mar-2025

Project


Test data

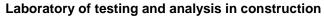
Test date 24-Mar-2025 Device type CONTROLS 26-WF31E20 Borehole FS07 Sample number 47596 1.50 - 1.70 Loading cell ACE 8

I est method Consolidation test	
Sample preparation procedure Undisturbed - Flooded	
Sample description brown, firm, medium plasticity CLAY	
Observations -	

ers –	Diameter	D₀[mm]	50.47	Particle density	γ _s [kN/m³]	26.05	Initial water content	w₀[%]	19.25
nitia iysic amet	Sample height	H _o [mm]	20	Initial dry density	γ _d [kN/m³]	16.80	Degree of saturation	S _r [%]	92.87
ph	Sample mass	m₀[g]	81.74	Initial bulk density	γ [kN/m³]	20.03	Void ratio	e ₀ [-]	0.551

	Loading stage	Pressure σ [kPa]	Deformation ε[%]	Void ratio e [-]
	Stage 1	15 - 50	0.590	0.541
	Stage 2	50 - 100	1.185	0.532
ęρ	Stage 3	100 - 200	1.975	0.520
netei	Stage 4	200 - 300	2.635	0.510
oarar	Stage 5	300 - 500	3.630	0.494
l eldi	Stage 6	500 - 800	4.610	0.479
Isam	Stage 7	800 - 400	4.350	0.483
ninec	Stage 8	400 - 15	2.925	0.505
Determined sample parameters	Stage 9	-	-	-
ā	Stage 10	-	-	-
	Stage 11	-	-	-
	Stage 12	-	-	-

	Loading stage	Pressure σ [kPa]	Coef. Of vertical consolidation cv [m2/s]	Coef. Of secondary compression Ca [-]
	Stage 1	15 - 50	-	-
	Stage 2	50 - 100	-	-
sters	Stage 3	100 - 200	-	-
ame	Stage 4	200 - 300	-	-
par	Stage 5	300 - 500	-	-
eldı	Stage 6	500 - 800	-	-
san	Stage 7	800 - 400	-	-
per	Stage 8	400 - 15	-	-
Ē	Stage 9	-	-	-
Determined sample parameters	Stage 10	-	-	-
	Stage 11	-	-	-
	Stage 12	-	-	-


Swelling pressure	p _u [kPa]	9.40
Preload	p _{pr} [kPa]	15.00

				log σ [kP	a]			
0.57			0.	.551				
Void ratio - e[-]				•	0.541	0.532	0.520	
Void			0.	.505			0.510	Q.494
0.49							0.	483 8,479
0.45	2	4	8 10	20	50	100	200 300	500 700 1000

			_				4	8 10	20 50	100 20	0 300 500	700 1000
	Loading stage	Pressure σ [kPa]	Temperature T [°C]	Initial bulk density γ [kN/m³]	Specimen height change under load ΔH [mm]	Volume of soil particles V _s [%]	Volume of pores V _p [%]	Oedometer modulus E _{oed} [kPa]	Coef. of compressibility a_v [m²/MN]	Coef. Of volume compressibility m_v [m²/MN]	Compression index C _c [-]	Swelling index C _s [-]
	Stage 1	15 - 50	20	20.15	0.118	64.88	35.12	5932	0.261	0.169		
5	Stage 2	50 - 100	20	20.28	0.237	65.27	34.73	8403	0.185	0.119		
l și	Stage 3	100 - 200	20	20.44	0.395	65.79	34.21	12658	0.122	0.079		
parameters	Stage 4	200 - 300	20	20.58	0.527	66.24	33.76	15152	0.102	0.066		
	Stage 5	300 - 500	20	20.79	0.726	66.92	33.08	20101	0.077	0.050		
sample	Stage 6	500 - 800	20	21.00	0.922	67.61	32.39	30612	0.051	0.033	0.072	0.015
San	Stage 7	800 - 400	20	20.95	0.87	67.43	32.57	-	-	-	0.072	0.015
	Stage 8	400 - 15	20	20.64	0.585	66.44	33.56	-	-	-		
<u> </u>	Stage 9	-	-	-	-	-	-	-	-	-		
Determined	Stage 10	-	-	-	-	-	-	-	-			
Ď	Stage 11	-	-		-	-	,	-	-	Geosee		
	Stage 12	-	-	-	-		•	-	-	13 CCE		

Laboratory evaluator eng. geol. Gáll Hunor

Head of laboratory eng. geol. Nagy Szilárd

Authorization no. 4056/ISC/22.06.2023

street Principală, no. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590

E-mail: office@geosearch.ro

DETERMINATION OF SOIL SWELLING PRESSURE

according to SR EN ISO 17892-5:2017

Test report

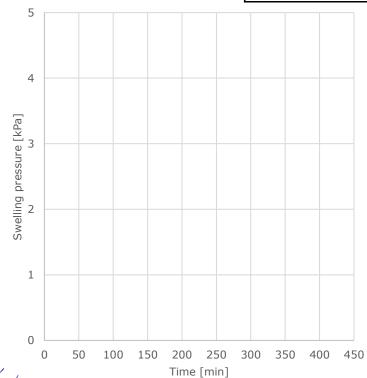
Client S.C. Glodeni Energy S.R.L. Order no. 2819LGS

Glodeni municipality, CF 50604, 52635, 52833, Mureș county Thin-Location Date of reception 18-Jan-2024

Sampling method walled tube (Shelby) **Test date** 16-Feb-2024

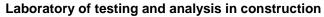
CONTROLS 27-T0302 Borehole no. Machine type Superior depth of sample 2.00 FS01

Inferior depth of sample 2.40 Sample number 42672


Sample type	cohesive			
Sample description	yellowish brown low plasticity sandy CLAY			
Observations	-			

Initial sample measurements					
Diameter	D ₀ [mm]	71.4			
Height	L ₀ [mm]	20			
Area	$A_0 [cm^2]$	40.04			
Volume	V_0 [cm ³]	80.08			

Initial physical parameters		
Initial water content	w ₀ [%]	19.01
Initial bulk density	γ [kN/m³]	19.77
Void ratio	e ₀ [–]	0.61
Degree of saturation	Sr [%]	84.65


Swelling pressure	Pu [kPa]	0.00

Final physical parameters		
Final water content	w ₀ [%]	19.42
Void ratio	e ₀ [–]	0.62
Degree of saturation	Sr [%]	86.25

aboratory evaluator eng. geol. Gáll Hunor

Head of laborator eng. geol. Nagy Sziláró

Authorization no. 4056/ISC/22.06.2023

street Principală, no. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590

E-mail: office@geosearch.ro

DETERMINATION OF SOIL SWELLING PRESSURE

according to SR EN ISO 17892-5:2017

Test report

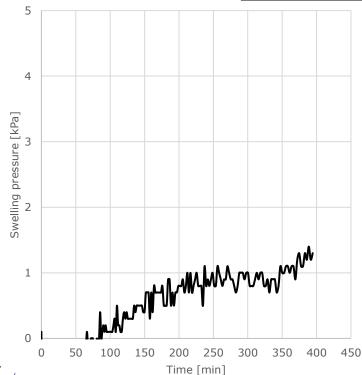
Client S.C. Glodeni Energy S.R.L. Order no. 2819LGS

Glodeni municipality, CF 50604, 52635, 52833, Mureș county Thin-Location Date of reception 18-Jan-2024

Sampling method walled tube (Shelby) **Test date** 16-Feb-2024

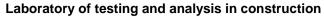
Machine type **CONTROLS 27-T0302** Superior depth of sample 1.60 Borehole no. FS02

Inferior depth of sample 2.00 Sample number 42677


Sample type	cohesive
Sample description	yellowish brown firm low plasticity sandy CLAY
Observations	-

Initial sample measurements					
Diameter	D ₀ [mm]	71.4			
Height	L ₀ [mm]	20			
Area	$A_0 [cm^2]$	40.04			
Volume	V_0 [cm 3]	80.08			

Initial physical parameters		
Initial water content	w ₀ [%]	17.44
Initial bulk density	$\gamma [kN/m^3]$	19.96
Void ratio	e ₀ [–]	0.58
Degree of saturation	Sr [%]	82.56


Swelling pressure	Pu [kPa]	1.40

Final physical parameters		
Final water content	w ₀ [%]	17.83
Void ratio	e ₀ [–]	0.58
Degree of saturation	Sr [%]	84.19

aboratory evaluator eng. geol. Gáll Hunor

Head of laborator eng. geol. Nagy Sziláró

Authorization no. 4056/ISC/22.06.2023

street Principală, no. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590

E-mail: office@geosearch.ro

DETERMINATION OF SOIL SWELLING PRESSURE

according to SR EN ISO 17892-5:2017

Test report

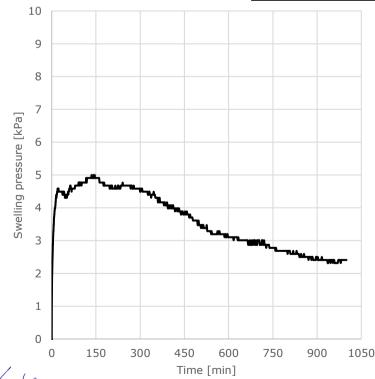
Client S.C. Glodeni Energy S.R.L. Order no. 2819LGS

Glodeni municipality, CF 50604, 52635, 52833, Mureș county Thin-Location Date of reception 18-Jan-2024

Sampling method walled tube (Shelby) Test date 19-Feb-2024

Machine type **CONTROLS 27-T0302** Superior depth of sample 1.00 Borehole no. FS03

Inferior depth of sample 1.40 Sample number 42685


Sample type	cohesive
Sample description	yellowish brown firm low plasticity sandy CLAY
Observations	-

Initial sample measurements		
Diameter	D ₀ [mm]	71.4
Height	L ₀ [mm]	20
Area	$A_0 [cm^2]$	40.04
Volume	V_0 [cm 3]	80.08

Initial physical parameters	5	
Initial water content	w ₀ [%]	19.32
Initial bulk density	$\gamma [kN/m^3]$	18.73
Void ratio	e ₀ [–]	0.71
Degree of saturation	Sr [%]	74.58

Swelling pressure	Pu [kPa]	5.00

Final physical parameters		
Final water content	w ₀ [%]	19.84
Void ratio	e ₀ [–]	0.71
Degree of saturation	Sr [%]	76.28

Laboratory evaluator eng. geol. Gáll Hunor

Head of laborator

eng. geol. Nagy Szilárá

The results contained in this test report refer only to the object under test.

Reproduction or modification of the test report is not permitted without the written approval of S.C. GeoSearch S.R.L. This test report has been prepared in two originals, one for the customer and one for S.C. GeoSearch S.R.L.

Laboratory of testing and analysis in construction

Authorization no. 4056/ISC/22.06.2023

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF SOIL SWELLING PRESSURE

according to SR EN ISO 17892-5:2017

Test report - no. 47592-RPU/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Order no. 3140LGS

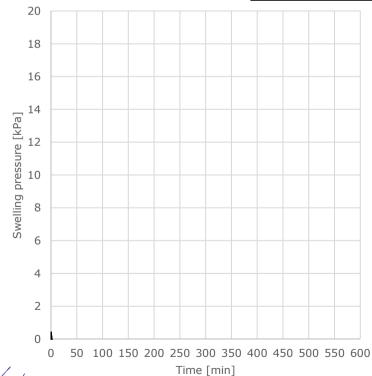
Location MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Date of reception 24-Mar-2025

Sampling metho Thin-walled tube (Shelby)

Test date 24-Mar-2025

Device type ACE - CONTROLS 26-WF31E20 Top height of sample [m] 1.50 Borehole no. FS05

Bottom height of sample [m] 1.70 Sample number 47592


Sample type	cohesive
Sample description	brownish-grey, stiff, medium plasticity sandy CLAY
Observations	-

Initial sample measurements		
Diameter	D ₀ [mm]	50.47
Height	L ₀ [mm]	20
Area	$A_0 [cm^2]$	20.01
Volume	V_0 [cm ³]	40.01

Initial physical parameter	s	
Initial water content	w ₀ [%]	17.17
Initial bulk density	$\gamma [kN/m^3]$	20.47
Void ratio	e ₀ [–]	0.51
Degree of saturation	Sr [%]	90.33

Swelling pressure	Pu [kPa]	0.40

Final physical parameters		
Final water content	w ₀ [%]	17.68
Void ratio	e ₀ [–]	0.51
Degree of saturation	Sr [%]	93.15

Laboratory evaluator eng. geol. Gáll Hunor

Head of laborator eng. geol. Nagy Sziláro

File code FL-121

Laboratory of testing and analysis in construction

Authorization no. 4056/ISC/22.06.2023

str. Principală, nr. 49 Rădaia 407059, jud. Cluj Tel.: +40 753 099 590 E-mail: office@geosearch.ro

DETERMINATION OF SOIL SWELLING PRESSURE

according to SR EN ISO 17892-5:2017

Test report - no. 47596-RPU/03.31.2025

Client S.C. GLODENI ENERGY S.R.L. Order no. 3140LGS

Location MUNICIPALITY VOIVODENI AND GLODENI, MUREȘ COUNTY, ROMÂNIA Date of reception 24-Mar-2025

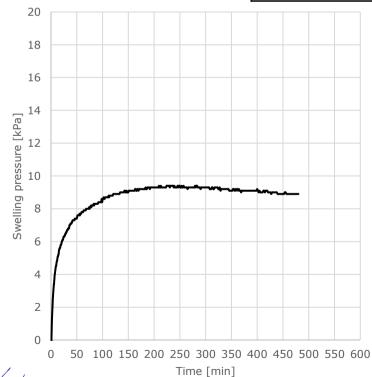
Sampling methor Thin-walled tube (Shelby)

Test date 24-Mar-2025

Device type ACE - CONTROLS 26-WF31E20 Top height of sample [m] 1.50

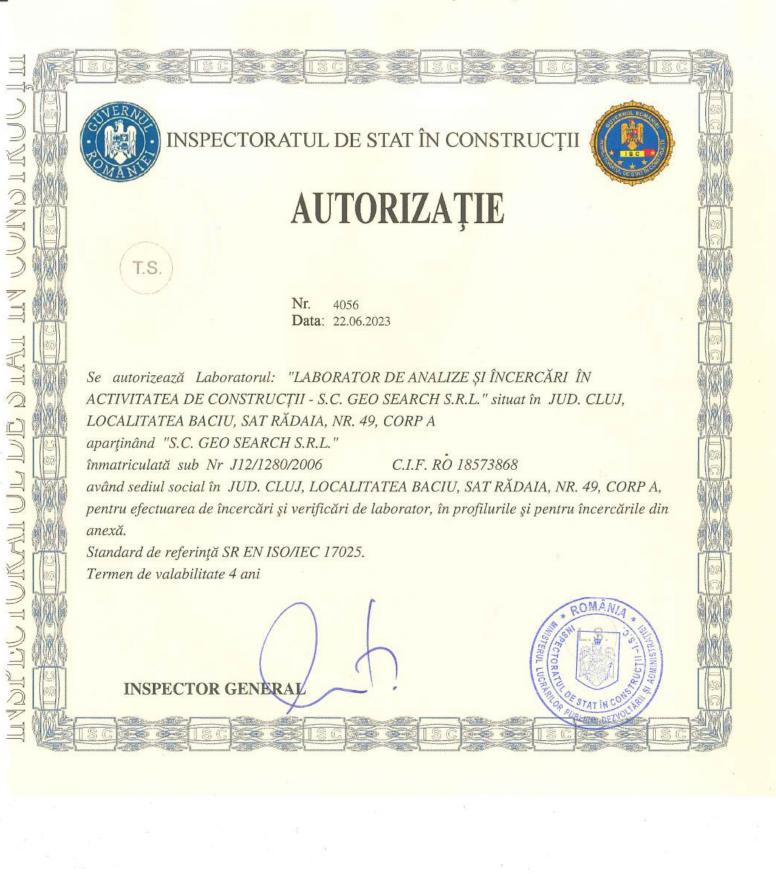
Borehole no. FS07

Bottom height of sample [m] 1.70 Sample number 47596


Sample type	cohesive
Sample description	brown, firm, medium plasticity CLAY
Observations	-

Initial sample measurements		
Diameter	D ₀ [mm]	50.47
Height	L ₀ [mm]	20
Area	$A_0 [cm^2]$	20.01
Volume	V_0 [cm ³]	40.01

Initial physical parameters	s	
Initial water content	w ₀ [%]	11.61
Initial bulk density	$\gamma [kN/m^3]$	20.78
Void ratio	e ₀ [–]	0.40
Degree of saturation	Sr [%]	77.19


Swelling pressure	Pu [kPa]	9.40

Final physical parameters		
Final water content	w ₀ [%]	12.08
Void ratio	e ₀ [–]	0.40
Degree of saturation	Sr [%]	80.47

Laboratory evaluator eng. geol. Gáll Hunor Head of laborator eng. geol. Nagy Sziláro

File code FL-121

Anexa 1 - pag. 1 la autorizația Laboratorului "LABORATOR DE ANALIZE ȘI ÎNCERCĂRI ÎN ACTIVITATEA DE CONSTRUCȚII - S.C. GEO SEARCH S.R.L. situat în JUD. CLUJ, LOCALITATEA BACIU, SAT RĂDAIA, NR. 49, CORP A

Nr. 4056 / 22.06.2023

ÎNCERCĂRI AUTORIZATE

Denumire profil / Nomenclator încercări	Denumire profil / Nomenclator încercări
D - drumuri	GTF - geotehnică și teren de fundare
Amestecuri de agregate netratate și tratate cu lianți hidraulici. Metode de	Teren de fundare. Cercetări prin sondaje deschise. Prelevare probe
încercare pentru determinarea în laborator a masei volumice de referință și a	Teren de fundare. Determinarea caracteristicilor de compactare. Încercarea
conținutului de apă. Compactare Proctor	Proctor
Controlul calității terasamentelor. Determinarea capacității portante a	Teren de fundare. Determinarea caracteristicilor fizice şi mecanice ale
terasamentelor. Verificarea capacității portante cu aparatul CBR în laborator	pământurilor cu umflări și contracții mari. Determinarea contracției liniare
Controlul calității terasamentelor. Determinarea capacității portante a	Teren de fundare. Determinarea caracteristicilor fizice şi mecanice ale
terasamentelor. Verificarea capacității portante cu aparatul CBR pe teren	pământurilor cu umflări și contracții mari. Determinarea limitei de contractie
Controlul calității terasamentelor. Determinarea capacității portante a	Teren de fundare. Determinarea caracteristicilor fizice şi mecanice ale
terasamentelor. Verificarea capacității portante cu placa statică Lucas	pământurilor cu umflări și contracții mari. Determinarea presiunii de umflare
Controlul calității terasamentelor. Determinarea modulului dinamic de	Teren de fundare. Determinarea caracteristicilor fizice și mecanice ale
deflecție Evd obținut cu deflectometrul dinamic ușor LWD	pământurilor cu umflări și contracții mari. Determinarea umflării libere
Determinarea prin deflectometrie a capacității portante a drumurilor cu	Teren de fundare. Determinarea compresibilității pământurilor prin
structuri rutiere suple și semirigide cu deflectometrul cu pârghie tip	încercarea în edometru. Determinarea compresibilității pământurilor
Benkelman	Teren de fundare. Determinarea compresibilității pământurilor prin
Lucrări de drumuri. Straturi rutiere din agregate naturale sau pământuri	încercarea în edometru. Determinarea consolidării pământurilor
stabilizate cu lianți hidraulici sau puzzolanici. Metode de determinare și	Teren de fundare. Determinarea conținutului de carbonați. Metoda de
încercare. Determinarea compoziției granulometrice a amestecului de pământ	laborator
și liant	Teren de fundare. Determinarea densității pământurilor. Metoda cu ștanța
Lucrări de drumuri. Straturi rutiere din agregate naturale sau pământuri	Teren de fundare. Determinarea densității pământurilor. Metoda prin
stabilizate cu lianți hidraulici sau puzzolanici. Metode de determinare și	cântărire hidrostatică
încercare. Determinarea umidității în laborator	Teren de fundare. Determinarea densității scheletului pământului
GTF - geotehnică și teren de fundare	Teren de fundare. Determinarea granulozității. Metoda cernerii
Determinarea indicelui Californian de capacitate portanta (CBR) in laborator	Teren de fundare. Determinarea granulozității. Metoda sedimentării
	Teren de fundare. Determinarea greutății volumice, pe teren. Metoda
Determinarea indicelui Californian de capacitate portanta (CBR) pe teren	determinării volumului cu apă și cu folie de material plastic
Investigații și încercări geotehnice. Încercări de laborator pe pământuri.	Teren de fundare. Determinarea greutății volumice, pe teren. Metoda
Încercare triaxială neconsolidată nedrenată	determinării volumului cu nisip afânat
Investigații și încercări geotehnice. Încercări de laborator pe pământuri.	Teren de fundare. Determinarea limitelor de plasticitate. Determinarea
Încercări consolidate de compresiune triaxială ale pământurilor saturate	limitei inferioare de plasticitate. Metoda cilindrilor de pământ
Investigații și încercări geotehnice. Încercări pe teren. Încercare de penetrare	Teren de fundare. Determinarea limitelor de plasticitate. Determinarea
cu conul electric și cu piezoconul	limitei superioare de plasticitate. Metoda cu conul
Investigații și încercări geotehnice. Încercări pe teren. Încercare de penetrare	Teren de fundare. Determinarea limitelor de plasticitate. Determinarea
dinamică. Încercare de penetrare dinamică grea	limitei superioare de plasticitate. Metoda cu cupa
Investigații și încercări geotehnice. Încercări pe teren. Încercare de penetrare	Teren de fundare. Determinarea materiilor organice. Identificarea
dinamică. Încercare de penetrare dinamică medie	conținutului de humus solubil în alcalii
Investigații și încercări geotehnice. Încercări pe teren. Încercare de penetrare	Teren de fundare. Determinarea modulului de deformație liniară prin
dinamică. Încercare de penetrare dinamică ușoară	încercări pe teren cu placa
Investigații și încercări geotehnice. Încercări pe teren. Încercare de penetrare	Teren de fundare. Determinarea permeabilității în laborator. Metoda
standard	permeametrului cu gradient constant cu sucțiune
Investigații și încercări geotehnice. Monitorizare geotehnică prin	Teren de fundare. Determinarea permeabilității în laborator. Metoda
instrumentare in situ. Măsurarea deplasării de-a lungul unei linii: înclinometre	permeametrului cu gradient variabil
	Teren de fundare. Determinarea rezistenței pământurilor la forfecare, prin
Teren de fundare. Cercetări geotehnice prin foraje executate în pământuri.	încercarea de forfecare directă. Încercarea de forfecare consolidată drenată
Prelevare probe	(CD)

INSPECTOR GENERAL

LASE STAT IN CO

Anexa 1 - pag. 2 la autorizația Laboratorului "LABORATOR DE ANALIZE ȘI ÎNCERCĂRI ÎN ACTIVITATEA DE CONSTRUCȚII - S.C. GEO SEARCH S.R.L. situat în JUD. CLUJ, LOCALITATEA BACIU, SAT RĂDAIA, NR. 49, CORP A

Nr. 4056 / 22.06.2023

ÎNCERCĂRI AUTORIZATE

De	enumire profil / Nomenclator încercări
GTF - geotehnie	că și teren de fundare
Teren de fundare.	Determinarea umidității în laborator
Teren de fundare.	Încercarea pământurilor la compresiune monoaxială

INSPECTOR GENERAL

ALS LIFE SCIENCES ROMANIA SRL

ENVIRONMENTAL LABORATORY

Str. Constantin Stere, Nr. 16, Ploiesti 100573 PRAHOVA Romania Tel.: 0244-596193; E-mail: info.ro@alsqlobal.com

accredited for

CERTIFICATE OF ANALYSIS

Work Order : P12400768 | Issue Date : 09-Feb-2024

Customer : SC GEO SEARCH SRL Laboratory : ALS LIFE SCIENCES ROMANIA SRL

Contact : Florin Borbei Contact : Client Service

Address : STR. AVRAM IANCU 442-446 Address : STR. CONSTANTIN STERE, NR. 16

JUD. CLUJ PLOIESTI

FLORESTI 100573 PRAHOVA Romania

Telephone : ---- Telephone : 0244-596193

Project : ---- Page : 1 of 3

Order number : 329/01.02.2024 Copy No. : 1

C-O-C number : ---- : Date Samples : 01-Feb-2024

: Com Voievodeni si Com. Glodeni, Jud. Quote number : PI2019GEOSE-RO0001

Mures, Romania (RO-102-18-001190)

Sampled by : Client Date of test : 01-Feb-2024 - 09-Feb-2024

QC Level : ALS RO Quality Control Schedule

General Comments

Site

The results are refering only to the analysed sample.

Values denoted with "<" represents smaller values than the reporting limits of the method.

The laboratory does not keep replicates.

The report shall not be reproduced partially or in full without prior written approval from ALS LIFE SCIENCES ROMANIA.

Test report was issued in 1 copy for the client.

The related comments are not covered by Renar accreditation.

For more informations please consult Renar web site.

The samples are kept in the laboratory only until test reports will be issued.

SAMPLING AND CONSERVATION DATA: The information about sampling, preservation and transport of the samples was provided to the client in the submitted technical - financial offer. The sample was provided by the client. The client has the responsibility for collecting, preserving and transporting the sample. Receiving conform sample.

Responsible for accuracy

<u>Signatories</u> Lucretia Tudorache

<u>Position</u> Laboratory Manager

 Issue Date
 : 09-Feb-2024

 Page
 : 2 of 3

 Work Order
 : PI2400768

Customer : SC GEO SEARCH SRL

Analytical Results

Sub-Matrix: SOIL		Clie	ent sample ID	Proba FS01 Ad. prelevare 1.50	Proba FS02 Ad. prelevare 1.00	Proba FS03 Ad. prelevare 1.50
				m	m	m
		Laborato	ory sample ID	PI2400768001	PI2400768002	PI2400768003
	(Client sampli	ng date / time	[01-Feb-2024]	[01-Feb-2024]	01-Feb-2024 00:00
Parameter	Method	LOR	Unit	Result	Result	Result
Nonmetalic Inorganic Parameters						
Electrical Resistivity	S-REZV-NA	10.0	ohm m	325	343	370
Oxidation-Reduction Potential(ORP)	S-ORP-NA	-	mV	367.7	366.6	361.7
Physical Parameters						
Conductivity	S-CON-ELE	0.10	μS/cm	34.3	32.5	30.2
pH (H2O)	S-PH-ELE01	2.00	pH Unit	8.31	7.91	7.75
Nonmetallic Inorganic Parameters						
Chloride as CI-	S-CL-TIT-R	0.0010	% DW	0.0071	0.0078	0.0064
Sulfides	S-SFD-TIT	10.0	mg/kg DW	<10.0	<10.0	<10.0
Acid Neutralising Capacity	S-ANC-TIT	1.0	mol/kg DW	<1.0	<1.0	<1.0
Base Neutralising Capacity (BNC)	S-ANC-TIT	1.0	mol/kg DW	<1.0	<1.0	<1.0
Sulfate as SO4 - Soluble	S-SO4-GR	50	mg/kg DW	<50	<50	<50
Sulfate as SO4 - Soluble	S-SO4A-GR	500	mg/kg DW	<500	<500	<500

Sub-Matrix: SOIL		Cli	ent sample ID	Proba FS03	Proba FG26	Proba FG29
Oub Wattix. OoiL				Ad. prelevare 3.40	Ad. prelevare 1.00	Ad. prelevare 1.00
				m	m m	m
		Laborate	ory sample ID	PI2400768004	PI2400768005	PI2400768006
	(Client sampli	ng date / time	01-Feb-2024 00:00	01-Feb-2024 00:00	01-Feb-2024 00:00
Parameter	Method	LOR	Unit	Result	Result	Result
Nonmetalic Inorganic Parameters						
Electrical Resistivity	S-REZV-NA	10.0	ohm m	308	148	300
Oxidation-Reduction Potential(ORP)	S-ORP-NA	-	mV	356.7	347.8	346.8
Physical Parameters						
Conductivity	S-CON-ELE	0.10	μS/cm	36.2	75.4	37.2
pH (H2O)	S-PH-ELE01	2.00	pH Unit	7.14	7.03	7.62
Nonmetallic Inorganic Parameters						
Chloride as CI-	S-CL-TIT-R	0.0010	% DW	0.0074	0.0081	0.0057
Sulfides	S-SFD-TIT	10.0	mg/kg DW	<10.0	<10.0	<10.0
Acid Neutralising Capacity	S-ANC-TIT	1.0	mol/kg DW	<1.0	<1.0	<1.0
Base Neutralising Capacity (BNC)	S-ANC-TIT	1.0	mol/kg DW	<1.0	<1.0	<1.0
Sulfate as SO4 - Soluble	S-S04-GR	50	mg/kg DW	<50	<50	<50
Sulfate as SO4 - Soluble	S-SO4A-GR	500	mg/kg DW	<500	<500	<500

Sub-Matrix: SOIL		Cli	ent sample ID	Proba FG41 Ad. prelevare 1.00 m		
		Laborato	ory sample ID	PI2400768007		
	(Client sampli	ng date / time	01-Feb-2024 00:00		
Parameter	Method	LOR	Unit	Result	Result	Result
Nonmetalic Inorganic Parameters						
Electrical Resistivity	S-REZV-NA	10.0	ohm m	317		
Oxidation-Reduction Potential(ORP)	S-ORP-NA	-	mV	346.3		
Physical Parameters						
Conductivity	S-CON-ELE	0.10	μS/cm	35.2		
pH (H2O)	S-PH-ELE01	2.00	pH Unit	7.10		
Nonmetallic Inorganic Parameters						
Chloride as CI-	S-CL-TIT-R	0.0010	% DW	0.0060		
Sulfides	S-SFD-TIT	10.0	mg/kg DW	<10.0		
Acid Neutralising Capacity	S-ANC-TIT	1.0	mol/kg DW	<1.0		
Base Neutralising Capacity (BNC)	S-ANC-TIT	1.0	mol/kg DW	<1.0		
Sulfate as SO4 - Soluble	S-SO4-GR	50	mg/kg DW	<50		

Issue Date : 09-Feb-2024 Page : 3 of 3 Work Order Customer

: PI2400768 : SC GEO SEARCH SRL

Sub-Matrix: SOIL		Clie	ent sample ID	Proba FG41 Ad. prelevare 1.00		
				m		
		Laborate	ory sample ID	PI2400768007		
	C	lient sampli	ing date / time	01-Feb-2024 00:00		
Parameter	Method	LOR	Unit	Result	Result	Result
Nonmetallic Inorganic Paramete	rs - Continued					
Sulfate as SO4 - Soluble	S-SO4A-GR	500	mg/kg DW	<500		

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, delivery date in brackets without a time component will be displayed instead.

Key: LOR = Limit of reporting

The end of result part of the certificate of analysis

Brief Method Summaries

Analytical Methods	Method Descriptions
*S-ANC-TIT	Metoda interna conform SR EN 14429:2015 Anexa C. Determinarea preliminară a consumului de acid/bază;
S-CL-TIT-R	PSL-38, STAS 7184/7-87 Soil. Determination of mineral salts in aqueous extract 1: 5 (pct.2) and 4.2 Determination of the chlorine anion (CI-), by titration; 7
S-CON-ELE	PSL-27, SR ISO 11265+A1:1998 Soil quality. Determination of the specific electrical conductivity; 2
*S-ORP-NA	Metoda interna de determinare
S-PH-ELE01	PSL-18, SR EN ISO 10390:2022 Sludge, treated biowaste and soil. Determination of pH; 1
*S-REZV-NA	Metoda de calcul din valorile masurate ale Conductivitatii electrice.
*S-SFD-TIT	STAS 7184/7-1987, SR 7510:1997 Determination of Sulfide content. Iodometric Method.
S-SO4A-GR	PSL-37, Acid soluble Sulfate; SR ISO 11048:1999 Soil quality. Determination of water-soluble and acid soluble sulphate; 15
S-SO4-GR	PSL-37, Water soluble Sulfate; SR ISO 11048:1999 Soil quality. Determination of water-soluble and acid soluble sulphate;

A '*' symbol preceeding any method indicates RENAR non-accredited test. A '**' symbol preceeding any method description indicates test made in a subcontracted laboratory outside the ALS LIFE SCIENCES ROMANIA SRL laboratory.